Something interesting about 616-14-8

Compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotations of configurationally related azides》. Authors are Levene, P. A.; Rothen, Alexandre; Kuna, Martin.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Application In Synthesis of 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Substances of the type MeCH[(CH2)n1X][(CH2)n2R], where n1 or n2 = 0 or an integer, X = a functional group and R = a normal alkyl, Ph or C6Hn group, can be classified into 2 categories, viz., those, typified by X = CHO, in which the configuration of the 1st members having n1 = 0 can be correlated by classical methods to those having n1 > 0, and those, typified by X = halogen, in which such correlation cannot be accomplished by classical methods. For the purpose of solving the latter problem the azides were chosen over the halides, inasmuch as they can be converted into the corresponding amines. The amines, while belonging to the 2nd category, can be correlated among themselves by a sufficiently reliable though nonclassical argument which will be reported later. The secondary azides were prepared by the action of NaN3 on the iodides and the amines by reduction of the azides with PtO2. The rotatory phenomena observed in the series of azides and halides were compared with those in the series of aldehydes and were found to be dissimilar in both series. Hence a comparison of these phenomena cannot be used for the correlation of the members of the series of halides and azides having n1 = 0 with those having n1 > 0. The following compounds were prepared: l-2-iodobutane, b. 111-18°, [M]D25 -24.1°, from the alc. and anhydrous HI in a bomb tube at room temperature for 2 days; d-2-azidobutane, b500 85°, d425 0.8619, nD25 1.4122, [M]D25 15.9°; d-2-aminobutane, [M]D25, 0.66° (in H2O), (HCl salt, [M]5875.625 -0.44° (in H2O)); l-2-iodoöctane, b1 52°, nD25 1.4863, d425 1.3158, [M]D25 -80.0°; d-2-azidoöctane, b9 68°, nD25 1.4332, d425 0.8555, [M]D25 43.4°, 42.5° (in heptane (I)); d-2-aminoöctane, b9 48°, nD25 1.4220, [M]D25 5.41°, (HCl salt, [M]D25 -6.44° (in H2O)); d-1-iodo-2-methylbutane, b. 145-6°, nD25 1.4950, [M]D25 8.28°, maximum [M]D25 11.1°; d-1-azido-2-methylbutane, b138 72°, nD25 1.4240, d425 0.8770, [M]D25 8.61°, maximum [M]D25 11.6°; l-1-amino-2-methylbutane, b12 40-5°, [M]5875.625 -0.21° (in H2O); l-1-azido-2-methylhexane, b15 59-60°, [α]D25 -0.30°; d-1-iodo-2-methylnonane, b4 86°, d425 1.254, [M]D25 2.54°; l-1-azido-2-methylnonane, b10 98-102°, d425 0.8658, nD25 1.4430, [M]D25 -0.74°; l-1-iodo-3-methylpentane, b12 54°, d425 1.3934, nD25 1.4866, [M]D25 -16.1°, maximum [M]D25 -43.9°; l-1-azido-3-methylpentane, b. 145-8°, nD25 1.4300, [M]D25 -9.63°, maximum [M]5875.625 -26.3° (in I); d-1-iodo-4-methylhexane, b13 74-5°, b103 124-6°, nD25 1.4852, d425 1.3579, [M]D25 8.20°, maximum [M]D25 26.2°; d-1-azido-4-methylhexane, b418 157°, d425 0.8636, nD25 1.4323, [M]5875.625 5.41°, maximum [M]5875.625 17.3° (in I.). All values for [M] are for the homogenous substance unless otherwise stated.

Compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extended knowledge of 4531-54-8

Compound(4531-54-8)SDS of cas: 4531-54-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Methyl-4-nitro-1H-imidazol-5-amine), if you are interested, you can check out my other related articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine(SMILESS: NC1=C([N+]([O-])=O)N=CN1C,cas:4531-54-8) is researched.Recommanded Product: 2-(Furan-2-yl)-2-oxoacetaldehyde. The article 《Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles》 in relation to this compound, is published in Acta Poloniae Pharmaceutica. Let’s take a look at the latest research on this compound (cas:4531-54-8).

Octanol-water partition coefficients (P) were determined for 42 simple nitroimidazoles with Me, Cl, Br, MeO, NH2, and NO2 substituents. Correlation between log P and the substituent constants πX of Hansch and fX of Nys-Rekker was derived. For the N-methylated compounds, the average value of πN-CH3 was calculated to be -0.30. Significance of log P measurement in estimating the tautomeric equilibrium in 4(5)-nitroimidazoles is discussed in detail.

Compound(4531-54-8)SDS of cas: 4531-54-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Methyl-4-nitro-1H-imidazol-5-amine), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Interesting scientific research on 616-14-8

Compound(616-14-8)Safety of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called N-Heterocyclic olefins as efficient phase-transfer catalysts for base-promoted alkylation reactions, published in 2016, which mentions a compound: 616-14-8, mainly applied to dicarbonyl compound alkyl halide alkylation reaction heterocyclic olefin catalyst; heterocyclic olefin preparation, Safety of 1-Iodo-2-methylbutane.

N-Heterocyclic olefins (NHOs), e.g., I have very recently emerged as efficient promoters for several chem. reactions due to their strong Bronsted/Lewis basicities. The novel application of NHOs as efficient phase-transfer organocatalysts for synthetically important alkylation reactions on a wide range of substrates, further demonstrates the great potential of NHOs in organic chem has been reported.

Compound(616-14-8)Safety of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Fun Route: New Discovery of 616-14-8

Compound(616-14-8)Quality Control of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Quality Control of 1-Iodo-2-methylbutane. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Diphosphorus tetraiodide (P2I4). A valuable reagent for regioselective synthesis of iodo alkanes from alcohols. Author is Lauwers, M.; Regnier, B.; Van Eenoo, M.; Denis, J. N.; Krief, A..

Primary, secondary, and tertiary alkanols and phenylalkanols and secondary and tertiary cycloalkanols were converted in high yields to the resp. alkyl, phenylalkyl, and cycloalkyl iodides by P2I4 in CS2 and at 20°. E.g., ROH [R = Me(CH2)7, Ph(CH2)2, cyclopentyl] gave 80-8% RI in 24 h.

Compound(616-14-8)Quality Control of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A small discovery about 616-14-8

Compound(616-14-8)Related Products of 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Mori, Kenji; Yang, Chang Yeol researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Related Products of 616-14-8.They published the article 《Pheromone synthesis. Part 259: Synthesis of seven methyl-branched hydrocarbons as the pheromone candidates for female Korean apricot wasp, Eurytoma maslovskii》 about this compound( cas:616-14-8 ) in Tetrahedron. Keywords: pheromone synthesis Korean apricot wasp branched hydrocarbon. We’ll tell you more about this compound (cas:616-14-8).

Seven new methyl-branched hydrocarbons were synthesized, which were the pheromone candidates of the female Korean apricot wasp (Eurytoma maslovskii). They are (Z)-15-methyl-7-nonacosene (I), (Z)-17-methyl-7-hentriacontene (II), 3,7-dimethylheptacosane (III), 8,12-dimethyltriacontane (IV), 8,18-dimethyltriacontane (V), 3,7,11-trimethylnonacosane (VI), and 3,7,17-trimethylnonacosane (VII). All of them were synthesized as stereoisomeric mixtures, employing short and simple routes. Hydrocarbon VII was synthesized via 4,8-dimethyldecanal (tribolure), the red flour beetle pheromone. The hydrocarbons I, II, III and VI were identified by GC-MS anal. as the components (with unknown stereochem.) of the female-specific secretion of E. maslovskii.

Compound(616-14-8)Related Products of 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New explortion of 616-14-8

Compound(616-14-8)Computed Properties of C5H11I received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Suzuki, Takahisa published the article 《Identification of the aggregation pheromone of flour beetles Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae)》. Keywords: pheromone aggregation Tribolium methyldecanalysis; beetle aggregation pheromone methyldecanalysis.They researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Computed Properties of C5H11I. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-14-8) here.

The aggregation pheromone produced by the male red flour beetle, T. castaneum, and confused flour beetle, T. confusum, was identified as 4,8-dimethyldecan-1-al by gas-liquid chromatog., gas chromatog.-mass spectrometry, 1H NMR spectra, and synthesis of the compound The synthetic pheromone was less attractive compared with the natural pheromone, because the synthetic sample was composed of 4 optical isomers.

Compound(616-14-8)Computed Properties of C5H11I received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Continuously updated synthesis method about 616-14-8

Compound(616-14-8)SDS of cas: 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Spectrochimica Acta called The infrared spectrum of the formate ion, Author is Schutte, C. J. H.; Buijs, K., which mentions a compound: 616-14-8, SMILESS is CCC(CI)C, Molecular C5H11I, SDS of cas: 616-14-8.

The infrared spectra of anhydrous Ca(HCO2)2, Sr(HCO2)2, Ba(HCO2)2, and Pb(HCO2)2 show clearly the doubling of the fundamental bands of the formate ion owing to the existence of non-equivalent ions in the lattice. A new tetragonal phase of Ca(HCO2)2 precipitate when an organic solvent is added to an aqueous solution of Ca(HCO2)2. The new β phase belongs to space group D44-P412121, α = 9.46 A., c = 6.77 A., with 4 mols. per unit cell. The absorption bands for the β phase are single, in accordance with the crystallographic symmetry.

Compound(616-14-8)SDS of cas: 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discovery of 616-14-8

From this literature《Metal-free C(sp3)-H functionalization of sulfonamides via strain-release rearrangement》,we know some information about this compound(616-14-8)Safety of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Safety of 1-Iodo-2-methylbutane. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Metal-free C(sp3)-H functionalization of sulfonamides via strain-release rearrangement.

A metal-free reaction system that enables C-H bond functionalization of aliphatic sulfonamides R(CH2)2N(F)Ts (R = decyl, cyclohexyl, oxan-4-yl, benzyl, etc.) using DABCO as a promoter under mild conditions, affording a series of α,β-unsaturated imines R1CH=C(R)CH=NTs (R1 = Ph, 4-chlorophenyl, 2,3-dihydro-1-benzofuran-5-yl, etc.) in good yields with high selectivities was presented. This protocol tolerates a broad range of functionalities and can serve as a powerful synthetic tool for the late-stage modification of complex compounds More importantly, control experiments and detailed DFT calculations suggest that this process involves [2 + 2] cyclization/ring-cleavage reorganization, which opens up a new platform for the establishment of other related reorganization reactions.

From this literature《Metal-free C(sp3)-H functionalization of sulfonamides via strain-release rearrangement》,we know some information about this compound(616-14-8)Safety of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Interesting scientific research on 4531-54-8

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 4531-54-8, is researched, SMILESS is NC1=C([N+]([O-])=O)N=CN1C, Molecular C4H6N4O2Journal, Article, Research Support, Non-U.S. Gov’t, Analytical Methods called Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination, Author is Brusac, Edvin; Jelicic, Mario-Livio; Amidzic Klaric, Daniela; Nigovic, Biljana; Keser, Sabina; Mornar, Ana, the main research direction is HPLC stability compatibility azathioprine folic acid monolayer dose combination.Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine.

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Little discovery in the laboratory: a new route for 4531-54-8

From this literature《Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles》,we know some information about this compound(4531-54-8)Product Details of 4531-54-8, but this is not all information, there are many literatures related to this compound(4531-54-8).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles, published in 1985, which mentions a compound: 4531-54-8, Name is 1-Methyl-4-nitro-1H-imidazol-5-amine, Molecular C4H6N4O2, Product Details of 4531-54-8.

Octanol-water partition coefficients (P) were determined for 42 simple nitroimidazoles with Me, Cl, Br, MeO, NH2, and NO2 substituents. Correlation between log P and the substituent constants πX of Hansch and fX of Nys-Rekker was derived. For the N-methylated compounds, the average value of πN-CH3 was calculated to be -0.30. Significance of log P measurement in estimating the tautomeric equilibrium in 4(5)-nitroimidazoles is discussed in detail.

From this literature《Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles》,we know some information about this compound(4531-54-8)Product Details of 4531-54-8, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem