Some scientific research about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Recommanded Product: 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Castello, Gianrico; Grandi, Francesco; Munari, Stelio published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Recommanded Product: 616-14-8. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

The γ-radiolysis of liquid 2,3-dimethylbutane at room temperature was investigated under vacuum. Iodine was used as a free radical scavenger and the formed alkyl iodides were analyzed by gas chromatog. with electron capture detector. Irradiations of frozen 2,3-dimethylbutane at 77°K were also performed. The fragmentation products and many of those having a number of C atoms higher than the parent were identified and measured. The formation of the identified heavy products is mainly due to recombination of radicals, as demonstrated by the comparison between their yields and those of alkyl iodides.

After consulting a lot of data, we found that this compound(616-14-8)Recommanded Product: 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Sources of common compounds: 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax, published in 2021-06-30, which mentions a compound: 616-14-8, Name is 1-Iodo-2-methylbutane, Molecular C5H11I, Name: 1-Iodo-2-methylbutane.

Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatog. of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcs. (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds The structural/stereochem. elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatog. retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatog. fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and β-Me substituted fatty acids were detected herein for the first time in the kingdom Plantae.

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Chemistry Milestones Of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Category: thiomorpholine can be used in many types of reactions. And in most cases, this compound has more advantages.

Category: thiomorpholine. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Two Distinct Thermal Stabilities of DNA and Enzymatic Activities of DNase I in a Multistep Assembly with Carbazole Ligands: Different Binding Characteristics for Duplex and Quadruplex DNA.

A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′-(9-ethyl-9 H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1 H-imidazol-3-ium)) adopts two different binding states (binding states I and II) in its interactions with calf-thymus (ct-) DNA. Two distinct binding states were identified by biphasic UV/Vis and CD spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct-DNA, (Im+)2Cz binds to nearly every part of ct-DNA (binding state I). By contrast, an increased concentration of ct-DNA results in a switch in the DNA-binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2-((6-bromo-9-ethyl-9 H-carbazol-3-yl)ethynyl)-1,3-dimethyl-1 H-imidazol-3-ium) also shows biphasic UV/Vis spectral changes during the titration of ct-DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct-DNA. The stepwise equilibrium of the ligand-DNA-complex formation is capable of switching the thermal stability of ct-DNA, as well as the enzymic activity of DNase (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct-DNA and stabilize the double-helix structure, which results in a larger increase in the melting temperature of the ct-DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymic activity of DNase I in binding state I, although the enzymic activity is recovered once the binding state of the ligand-DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G-quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct-DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G-quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G-quadruplex DNA.

After consulting a lot of data, we found that this compound(616-14-8)Category: thiomorpholine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of the change of synthetic route on the product 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Electric Literature of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

Inukai, Norie; Kawai, Tsuyoshi; Yuasa, Junpei published the article 《Two Distinct Thermal Stabilities of DNA and Enzymatic Activities of DNase I in a Multistep Assembly with Carbazole Ligands: Different Binding Characteristics for Duplex and Quadruplex DNA》. Keywords: DNA DNase I multistep carbazole ligand duplex quadruplex.They researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Electric Literature of C5H11I. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-14-8) here.

A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′-(9-ethyl-9 H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1 H-imidazol-3-ium)) adopts two different binding states (binding states I and II) in its interactions with calf-thymus (ct-) DNA. Two distinct binding states were identified by biphasic UV/Vis and CD spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct-DNA, (Im+)2Cz binds to nearly every part of ct-DNA (binding state I). By contrast, an increased concentration of ct-DNA results in a switch in the DNA-binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2-((6-bromo-9-ethyl-9 H-carbazol-3-yl)ethynyl)-1,3-dimethyl-1 H-imidazol-3-ium) also shows biphasic UV/Vis spectral changes during the titration of ct-DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct-DNA. The stepwise equilibrium of the ligand-DNA-complex formation is capable of switching the thermal stability of ct-DNA, as well as the enzymic activity of DNase (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct-DNA and stabilize the double-helix structure, which results in a larger increase in the melting temperature of the ct-DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymic activity of DNase I in binding state I, although the enzymic activity is recovered once the binding state of the ligand-DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G-quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct-DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G-quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G-quadruplex DNA.

After consulting a lot of data, we found that this compound(616-14-8)Electric Literature of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discover the magic of the 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Product Details of 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Product Details of 616-14-8. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Preparation of standard mixtures of iodoalkanes by irradiation of iodine solutions in alkanes.

Mixtures of iodine with pentane, hexane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2,2-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, octane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were subjected to γ-irradiation and the gas chromatog. retention indexes of the resulting iodoalkanes determined

After consulting a lot of data, we found that this compound(616-14-8)Product Details of 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The important role of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)HPLC of Formula: 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Cerebrospinal fluid lymphocytes in experimental allergic encephalomyelitis.》. Authors are Wilkerson, L D; Lisak, R P; Zweiman, B.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).HPLC of Formula: 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

We report characteristics of the cerebrospinal fluid (CSF) pleocytosis (616+/-148 cells/microliter) that occurred in guinea-pigs with definite clinical experimental allergic encephalomyelitis developing 12 to 16 days after sensitization with homologous myelin basic protein. This pleocytosis was not present in the cerebrospinal fluid of a group of animals studied when still healthy, 9 or 10 days after similar sensitization. Eighty-nine per cent of cells in the CSF pleocytosis were small lymphocytes, 8% were larger lymphocytes and the remainder mostly monocytes. Of the lymphocytes, most were E-rosetting or null cells. B-cell markers were uncommon. The cellular patterns in this CSF pleocytosis appear to be similar to those seen in some delayed hypersensitivity responses.

After consulting a lot of data, we found that this compound(616-14-8)HPLC of Formula: 616-14-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Otto, R.; Hecht, P. published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Application In Synthesis of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

Short-lived radioisotopes separated from radionuclide generators are widely used. Possibilities of labeling with the daughter nuclides of the com. available Mo/Tc-, Sn/In-, and Te/I-generators and of the self-made Ba/La-generator in industrial tracer experiments are presented. The transfer of the daughter nuclides from the generator eluates into organic phases and the labeling of oil-phases and solid particles are investigated. The developed simple, quick and efficient methods are suitable for routine application under industrial conditions. Some examples of industrial applications of the generator nuclides are given, too.

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Continuously updated synthesis method about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Name: 1-Iodo-2-methylbutane. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about SPME-GC-MS analysis of volatile components in fruits of the frozen Ficus tikoua Bur.. Author is Yang, Xiu-qun; Liao, Bin; Yan, Xue-fen; Yang, Ya.

This thesis developed an SPME-GC-MS method for the aroma components in Ficus tikoua Bur. fruit. At the same time, the solid-phase micro extraction conditions were optimized: extraction temperature was 50°C, the extraction time was 40 min, added 8 g of sodium chloride electrolyte solid extraction Frozen Ficus tikoua Bur. fruit was detected out of 152 kinds of volatile substances, substances detected in 99.03%of the total. The main aroma components were esters, accounting for 33.06%; alcs., accounting for 13.14%; alkanes, accounting for 13.18%; there ketones, aldehydes, acids and other substances. Higher levels of 10 kinds of aroma components were guaiacol (14.71%), cyclobutane carboxylic acid dodecyl ester (13.54%), n-tridecane (6.05%), 2-tridecanone (4.72%), cyclohexasiloxane (4.44%), cyclobutane carboxylic acid decyl ester (4.18%), Me nonyl ketone (3.62%), acetic acid (2.98%), cyclopentanecarboxylic acid thirteen ester (2.48%), 2-tetradecanol (2.31%) and so on.

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Introduction of a new synthetic route about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Computed Properties of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Inukai, Norie; Kawai, Tsuyoshi; Yuasa, Junpei researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Computed Properties of C5H11I.They published the article 《Two Distinct Thermal Stabilities of DNA and Enzymatic Activities of DNase I in a Multistep Assembly with Carbazole Ligands: Different Binding Characteristics for Duplex and Quadruplex DNA》 about this compound( cas:616-14-8 ) in Chemistry – A European Journal. Keywords: DNA DNase I multistep carbazole ligand duplex quadruplex. We’ll tell you more about this compound (cas:616-14-8).

A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′-(9-ethyl-9 H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1 H-imidazol-3-ium)) adopts two different binding states (binding states I and II) in its interactions with calf-thymus (ct-) DNA. Two distinct binding states were identified by biphasic UV/Vis and CD spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct-DNA, (Im+)2Cz binds to nearly every part of ct-DNA (binding state I). By contrast, an increased concentration of ct-DNA results in a switch in the DNA-binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2-((6-bromo-9-ethyl-9 H-carbazol-3-yl)ethynyl)-1,3-dimethyl-1 H-imidazol-3-ium) also shows biphasic UV/Vis spectral changes during the titration of ct-DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct-DNA. The stepwise equilibrium of the ligand-DNA-complex formation is capable of switching the thermal stability of ct-DNA, as well as the enzymic activity of DNase (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct-DNA and stabilize the double-helix structure, which results in a larger increase in the melting temperature of the ct-DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymic activity of DNase I in binding state I, although the enzymic activity is recovered once the binding state of the ligand-DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G-quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct-DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G-quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G-quadruplex DNA.

After consulting a lot of data, we found that this compound(616-14-8)Computed Properties of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Interesting scientific research on 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Australian Journal of Chemistry called An extension of the linear relationship between molecular rotation and bond refraction, Author is Poh, Bo-Long, which mentions a compound: 616-14-8, SMILESS is CCC(CI)C, Molecular C5H11I, Application In Synthesis of 1-Iodo-2-methylbutane.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem