The Absolute Best Science Experiment for 4531-54-8

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Product Details of 4531-54-8 require different conditions, so the reaction conditions are very important.

Product Details of 4531-54-8. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Nitroarylamines via the Vicarious Nucleophilic Substitution of Hydrogen: Amination, Alkylamination, and Arylamination of Nitroarenes with Sulfenamides.

A new reaction of sulfenamides with electrophilic arenes under basic conditions is described. The σ adducts formed from nitroarenes and the anions of sulfenamides undergo elimination of thiol to produce the corresponding o- and/or p-nitroanilines. This reaction is analogous to the known alkylation and hydroxylation of nitroarenes via the vicarious nucleophilic substitution of hydrogen (VNS). The reaction gives access to a wide range of substituted nitroanilines, nitronaphthylamines, and aminoheterocycles. By means of the reaction with N-alkyl- and N-arylsulfenamides, it is possible to obtain N-alkylnitroanilines and nitrodiarylamines. By varying the structure of sulfenamide and the reaction conditions, particularly the nature and concentration of the base, it is possible to control the orientation of amination.

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Product Details of 4531-54-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of the change of synthetic route on the product 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I require different conditions, so the reaction conditions are very important.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotation and atomic dimension》. Authors are Brauns, D. H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Synthetic Route of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

This is a discussion (without new exptl. data) of a modified Guye’s law using the differences in at. dimensions, F-Cl, Cl-Br, and Br-I. B. tabulates the sp. and mol. rotations of the halogen compounds obtained by replacing the O-acetyl group of the 1st asym. C atom of acetyl sugars by F, Cl, Br, and I and for these and related compounds formulates 2 different rules: (1) when the halogen is attached directly to the asym. C atom the sp. rotations show differences proportional to the differences in at. dimensions, and (2) when the halogen is attached indirectly to the asym. C atom the mol. rotations show differences proportional to the differences in at. dimensions.

Different reactions of this compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Analyzing the synthesis route of 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Recommanded Product: 616-14-8 require different conditions, so the reaction conditions are very important.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 1-Iodo-2-methylbutane( cas:616-14-8 ) is researched.Recommanded Product: 616-14-8.Zhang, Bi-cheng; Yang, Bo; Liu, Jian; Guan, Sha; Rao, Zhi-guo; Gao, Jian-fei published the article 《Phenotype identification of tumor-associated macrophages in mice bearing lung carcinoma》 about this compound( cas:616-14-8 ) in Linchuang Zhongliuxue Zazhi. Keywords: phenotype macrophage lung carcinoma. Let’s learn more about this compound (cas:616-14-8).

Objective To identify the phenotype of tumor-associated macrophages (TAM) in mice bearing Lewis lung carcinoma (LLC). Methods LLC cells were planted in the dorsal necks of C57BL/6 mice s.c. The levels of Th1/Th2 cytokines in the transplantation tumors were tested by ELISA. Co-expression of CD68/macrophage mannose receptor (MMR) and CD68/inducible nitric oxide synthase (iNOS) of TAM was detected by double-labeled immunofluorescence staining. Phagocytic capacity of TAM was assessed by yeast phagocytosis assay. Results In the mice LLC transplantation tumors, Th2 cytokine shift was found in the microenvironment. The concentrations of IFN-γ and IL-12 were (2.19 ±> 0.34) ng/mL and (1635.92 ±> 754.86) ng/mL in transplantation tumors, lower than (5.49 ±> 1.04) ng/mL and (6161.48 ±>498.49) ng/mL in normal lung tissues (P <0.05). IL-4 and IL-10 were (29.31 ±> 14.47) ng/mL and (21.54 ±> 10.72) ng/mL in transplantation tumors, higher than (16.43 ±>6.31) ng/mL and (10.71 ±>2.02) ng/mL in normal lung tissues (P <0.05). The percentage of CD68/MMR(+) TAM in all the TAM was 69.7%-83.2%, while CD68/iNOS (+) was 16.8%-30.3%. The phagocytic rate and index of the transplantation tumors were (5.42 ±> 1.74)% and 0.08 ±>0.02, much lower than (23.63 ±> 5.81)% and 0.39 ±>0.14 in normal spleen tissues with statistical significance (P <0.01). Conclusion TAM in mice bearing LLC might be polarized to the alternative activation phenotype. Different reactions of this compound(1-Iodo-2-methylbutane)Recommanded Product: 616-14-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

More research is needed about 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)COA of Formula: C5H11I require different conditions, so the reaction conditions are very important.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 1-Iodo-2-methylbutane( cas:616-14-8 ) is researched.COA of Formula: C5H11I.Castello, Gianrico; D’Amato, Giuseppina published the article 《Preparation of standard mixtures of iodoalkanes by irradiation of iodine solutions in alkanes》 about this compound( cas:616-14-8 ) in Journal of Chromatography. Keywords: alkane iodination irradiation; iodoalkane gas chromatog. Let’s learn more about this compound (cas:616-14-8).

Mixtures of iodine with pentane, hexane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2,2-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, octane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were subjected to γ-irradiation and the gas chromatog. retention indexes of the resulting iodoalkanes determined

Different reactions of this compound(1-Iodo-2-methylbutane)COA of Formula: C5H11I require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New learning discoveries about 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 1-Iodo-2-methylbutane(SMILESS: CCC(CI)C,cas:616-14-8) is researched.Formula: C21H22ClNO3. The article 《Gamma radiolysis of branched chain hydrocarbons. 2,3-Dimethylbutane》 in relation to this compound, is published in Radiation Research. Let’s take a look at the latest research on this compound (cas:616-14-8).

The γ-radiolysis of liquid 2,3-dimethylbutane at room temperature was investigated under vacuum. Iodine was used as a free radical scavenger and the formed alkyl iodides were analyzed by gas chromatog. with electron capture detector. Irradiations of frozen 2,3-dimethylbutane at 77°K were also performed. The fragmentation products and many of those having a number of C atoms higher than the parent were identified and measured. The formation of the identified heavy products is mainly due to recombination of radicals, as demonstrated by the comparison between their yields and those of alkyl iodides.

Different reactions of this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Interesting scientific research on 198544-60-4

Different reactions of this compound((R)-(9H-Fluoren-9-yl)methyl (1-chloro-4-methyl-1-oxopentan-2-yl)carbamate)Formula: C21H22ClNO3 require different conditions, so the reaction conditions are very important.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: (R)-(9H-Fluoren-9-yl)methyl (1-chloro-4-methyl-1-oxopentan-2-yl)carbamate( cas:198544-60-4 ) is researched.Formula: C21H22ClNO3.Trabocchi, Andrea; Stefanini, Irene; Morvillo, Manfredi; Ciofi, Leonardo; Cavalieri, Duccio; Guarna, Antonio published the article 《Chemical genetics approach to identify new small molecule modulators of cell growth by phenotypic screening of Saccharomyces cerevisiae strains with a library of morpholine-derived compounds》 about this compound( cas:198544-60-4 ) in Organic & Biomolecular Chemistry. Keywords: oxazolopyrazine pyrazinooxazine morpholine preparation Saccharomyces cerevisiae cell growth modulator. Let’s learn more about this compound (cas:198544-60-4).

A chem. genetics approach has been applied in the screening of yeast deletants strains with a pool of morpholine-derived compounds in order to identify candidate small mols. able to produce phenotypic effects on yeast cells. The anal. of the effects of structurally diverse mols. towards cell growth rate in both exponential and stationary phases provides a tool to select candidate compounds for subsequent assays to identify new chem. entities as chem. probes for drug discovery.

Different reactions of this compound((R)-(9H-Fluoren-9-yl)methyl (1-chloro-4-methyl-1-oxopentan-2-yl)carbamate)Formula: C21H22ClNO3 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Fun Route: New Discovery of 616-14-8

The article 《Analysis of rotatory dispersions of configurationally related halides》 also mentions many details about this compound(616-14-8)Electric Literature of C5H11I, you can pay attention to it, because details determine success or failure

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Analysis of rotatory dispersions of configurationally related halides》. Authors are Levene, P. A.; Rothen, Alexandre; Marker, R. E..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Electric Literature of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Rotatory dispersion curves of halides of the type HMeRC(CH2)nX (X = Cl, Br, I; R = alkyl group; n = 0, 1, 2 or 3) are analyzed in the visible and the ultraviolet regions. The 3 halogen atoms function similarly with respect to the character of this curve in compounds of identical structure. A periodicity in the sign of some of the partial contributions of the halogen atom occurs with increase in n. The course of the rotatory dispersion when n = 1 is anomalous. An attempt is made to apply results when n > 0 to the sign of rotation for compounds where n = 0. When X = COOH, CHO, CN, CHMe2, etc., no complete analogy exists between this group and the group where X is a halogen. [M]D25 maximum (homogeneous) is given for the 16 compounds where X = Br, n = 1, 2, 3, 4, and R = Et, Pr, Bu, pentyl, and for the compound HMeEtC(CH2)5Br. Absorption spectra are given for λ 2100-3300 for 5 iodides. Rotatory dispersion curves are given for the compounds HMeEtCCH2I, HMe(C6H13)CCH2I, HMeEtCCH2Br and HMeEtCCH2Cl. [M]D25 maximum, nD25, d425 (vacuum) and rotatory dispersions (numerical) are given for several other compounds in this series. Differences between the interpretation of the dispersions of the iodides given by the authors (C. A. 27, 951) and that given by Kuhn (C. A. 29, 7159.1) are due to substantial differences between their exptl. data.

The article 《Analysis of rotatory dispersions of configurationally related halides》 also mentions many details about this compound(616-14-8)Electric Literature of C5H11I, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of reaction temperature change on equilibrium 616-14-8

The article 《Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones》 also mentions many details about this compound(616-14-8)Category: thiomorpholine, you can pay attention to it, because details determine success or failure

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones》. Authors are Foley, William M.; Welch, Frank J.; Combe, Edward M. La; Mosher, Harry S..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Category: thiomorpholine. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C.A. 51, 1828h. Title reactions were carried out with six ketones, and the % asymmetric reduction, i, was determined by comparing the observed rotation of each resulting carbinol with the maximum rotation of pure isomers obtained by resolution. The absolute configurations of the prepared carbinols were determined and R, [α]25D (neat), and i were as follows: Me, 0.63°, 13.4; iso-Pr, -0.38°, 4.6; Et, -2.94°, 10.7; Pr, -3.87°, 11.3; Bu, -3.78°, 11.0; and iso-Bu, -2.56°, 5.9. The results agreed with a reaction mechanism of Grignard reduction involving an intermediate cyclic six-membered transition state in which stereospecificity was controlled by steric interaction of the alkyl and tert-butyl groups of the ketones and the Me and Et groups of the Grignard reagent. The alkyl tert-butyl ketones were prepared by coupling the appropriate acid chloride, RCOCl, with the Grignard reagent from freshly distilled tert-BuCl in the presence of Cu2Cl2 to yield the following products (R, % yield based on Grignard reagent, b.p., and n25D given): Me, 33, 105.2°, 1.3974; Et, 89, 125.0-5.8°, 1.4049-51; Pr, 63, 145.0-5.8°, 1.4109-11; iso-Pr, 36, 135.2-6.7°, 1.4049-68; Bu, 69, 167.0-9.0°, 1.4149-59; and iso-Bu, 40, 155.5-7.0°, 1.4135-42. Only the Me and Pr tert-butylcarbinols were resolved in earlier work, and the resolution of the remaining four, by classical methods (Ingersoll, C.A. 38, 29257), is reported here. Racemic tert-BuCHEtOH (I), b. 136°, n20D 1.4235, was converted to the dl-acid phthalate, m. 88.0-8.3°. By procedures involving brucine and recrystallizations the (-)-acid phthalate (II) was obtained, m. 91.0-1.5°, [α]27D -3.75° (c 20.5, CHCl3), the rotation in CHCl3 being concentration dependent, 2.2° (c 1.5). (+)-I was regenerated from II, n20D 1.4230, α23D 27.40° (neat, l 1); acetate from (+)-I b38 74°, α24D 12.16° (neat, l 0.5), d23 0.856; benzoate from (-)-I b0.8 20°, α25D -3.19° (neat, l 0.5), n20D 1.4912, d23 0.957. Racemic tert-BuCH(OH)Pr-iso (III), b. 150.9-1.1°, n20D 1.4290-9, gave the dl-acid phthalate, m. 114.5-16.0°. The brucine salt was prepared and a less soluble form obtained, m. 173-5°, [α]28D -23°, which on hydrolysis gave an acid phthalate (IV), m. 100.5-3.0°, [α]25D 0.00°, which was hydrolyzed to (-)-III, α28D -7.22° (neat, l 1). Hydrolysis of the more soluble form of the brucine salt, [α]28D -16.1°, gave an acid phthalate (V), [α]28D 0.00°, which on hydrolysis gave (+)-III, α28D 7.22° (neat, l 1). The strychnine salt of IV was also prepared, [α]28D -25.7°, the acid phthalate regenerated, and converted to (-)-III, α28D -8.94° (neat, l 1), n20D 1.4300. The cinchonine salt of V was prepared, m. 144-7° (decomposition), [α]28D 106°, from which an acid phthalate was regenerated, m. 105.5-7.0°, and hydrolyzed to (+)-III, α28D 9.06° (neat, l 1). These latter values of -8.94° for (-)-III and 9.06° for (+)-III were considered best values. Also prepared were acetate of (+)-III, b155 130°, n21D 1.4166, α28D -1.44° (neat, l 1), and benzoate of (+)-III, b32 195°, n19D 1.4969, α25D -0.16° (neat, l 1). Racemic tert-BuCH(OH)Bu-iso (VI), b150 115-16°, n25D 1.4309, m. 17°, gave acid phthalate (VII), m. 83.5-4.5°. Strychnine was used in the resolution and eventually (+)-VII was obtained, m. 75.6-7.5°, [α]23D 8.7° (c 1.5, CHCl3), hydrolyzed to (+)-VI, m. 40-1°, α26D 57.5° (c 20.4, MeOH), and α23D 54.5° (neat, by extrapolation of rotation-concentration curve); acetate of (+)-VI b17 73°, α22D 15.15° (neat, l 0.5), n20D 1.4176, d22 0.852; benzoate of (+)-VI b0.6 88°, α25D 8.24° (neat, l 0.5), n20D 1.4870, d25 0.955. Racemic tert-BuCHBuOH (VIII), n20D 1.4320, was converted to acid phthalate (IX), m. 100.5-2.0°, and then to the strychnine salt. The regenerated (+)-IX was a glass, α23D 4.5° (c 2.8, CHCl3), which was saponified to (+)-VIII, n20D 1.4314, α24D 17.10° (neat, l 0.5). The (-)-phthalate from the more soluble fractions of strychnine salt gave (-)-VIII, α24D -16.39° (neat, l 0.5). The dl-tetrachlorophthalate of VIII was also prepared, m. 126-8°, converted to the strychnine salt, and the less soluble form, [α]25D -12°, hydrolyzed to (-)-acid tetrachlorophthalate, α22D -9.69°, which was saponified to (+)-VIII, α22D 13.70° (neat, l 0.5); 3,5-dinitrobenzoate (X) of (+)-VIII m. 107.5° (MeOH), α25D 10.0° (c 2.4, CHCl3); 3,5-dinitrobcnzoate of dl-VIII, m. 84.0-4.5°. X was saponified to (+)-VIII, b23 76°, α25D 17.12° (neat, l 0.5), n20D 1.4310, d26 0.823. The value for pure (+)-VIII was taken as α25D 34.24° (neat, l 1). From (-)-VIII, α25D -32.8° (neat, l 1), was prepared: acetate, b20 87°, α26D -11.25° (neat, l 0.5), n20D 1.4191, d26 0.851; benzoate, b0.5 98°, α25D -7.29° (neat, l 0.5), n20D 1.4887, d25 0.936; p-nitrobenzoate, b0.5 144-5°, α29D -12.50°, n25D 1.5070. Some work was done with the Grignard reagents of the following prepared compounds: (+)-1-bromo-2-methylbutane, b100 60.8°, n20D 1.4453, α24D 4.22° (neat, l 1), 84% optical purity, a 2nd preparation b100 57-8°, α26.6D 4.66°, 93% optical purity; and (+)-1-iodo-2-methytbutane, n20D 1.4955-69, α21D 8.65° (neat, l 1), 98.5% optical purity, 2nd preparation b53 70°, n20D 1.4969-72, α25D 16.8° (neat, l 2), optical purity 96.5%.

The article 《Asymmetric reductions. VI. The action of the Grignard reagent from (+)-1-chloro-2-methylbutane on a series of alkyl tert-butyl ketones》 also mentions many details about this compound(616-14-8)Category: thiomorpholine, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extended knowledge of 4531-54-8

The article 《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》 also mentions many details about this compound(4531-54-8)Synthetic Route of C4H6N4O2, you can pay attention to it or contacet with the author([email protected]) to get more information.

Synthetic Route of C4H6N4O2. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination. Author is Brusac, Edvin; Jelicic, Mario-Livio; Amidzic Klaric, Daniela; Nigovic, Biljana; Keser, Sabina; Mornar, Ana.

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

The article 《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》 also mentions many details about this compound(4531-54-8)Synthetic Route of C4H6N4O2, you can pay attention to it or contacet with the author([email protected]) to get more information.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

An update on the compound challenge: 616-14-8

The article 《Optical rotation and atomic dimension》 also mentions many details about this compound(616-14-8)Category: thiomorpholine, you can pay attention to it, because details determine success or failure

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotation and atomic dimension》. Authors are Brauns, D. H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Category: thiomorpholine. Through the article, more information about this compound (cas:616-14-8) is conveyed.

This is a discussion (without new exptl. data) of a modified Guye’s law using the differences in at. dimensions, F-Cl, Cl-Br, and Br-I. B. tabulates the sp. and mol. rotations of the halogen compounds obtained by replacing the O-acetyl group of the 1st asym. C atom of acetyl sugars by F, Cl, Br, and I and for these and related compounds formulates 2 different rules: (1) when the halogen is attached directly to the asym. C atom the sp. rotations show differences proportional to the differences in at. dimensions, and (2) when the halogen is attached indirectly to the asym. C atom the mol. rotations show differences proportional to the differences in at. dimensions.

The article 《Optical rotation and atomic dimension》 also mentions many details about this compound(616-14-8)Category: thiomorpholine, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem