A new application about 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Safety of 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Suzuki, Takahisa published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Safety of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

The aggregation pheromone produced by the male red flour beetle, T. castaneum, and confused flour beetle, T. confusum, was identified as 4,8-dimethyldecan-1-al by gas-liquid chromatog., gas chromatog.-mass spectrometry, 1H NMR spectra, and synthesis of the compound The synthetic pheromone was less attractive compared with the natural pheromone, because the synthetic sample was composed of 4 optical isomers.

Different reactions of this compound(1-Iodo-2-methylbutane)Safety of 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Now Is The Time For You To Know The Truth About 4531-54-8

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Formula: C4H6N4O2 require different conditions, so the reaction conditions are very important.

Formula: C4H6N4O2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Nitroarylamines via the Vicarious Nucleophilic Substitution of Hydrogen: Amination, Alkylamination, and Arylamination of Nitroarenes with Sulfenamides. Author is Makosza, Mieczyslaw; Bia-lecki, Maciej.

A new reaction of sulfenamides with electrophilic arenes under basic conditions is described. The σ adducts formed from nitroarenes and the anions of sulfenamides undergo elimination of thiol to produce the corresponding o- and/or p-nitroanilines. This reaction is analogous to the known alkylation and hydroxylation of nitroarenes via the vicarious nucleophilic substitution of hydrogen (VNS). The reaction gives access to a wide range of substituted nitroanilines, nitronaphthylamines, and aminoheterocycles. By means of the reaction with N-alkyl- and N-arylsulfenamides, it is possible to obtain N-alkylnitroanilines and nitrodiarylamines. By varying the structure of sulfenamide and the reaction conditions, particularly the nature and concentration of the base, it is possible to control the orientation of amination.

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Formula: C4H6N4O2 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Product Details of 616-14-8 require different conditions, so the reaction conditions are very important.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Interaction of hydroxy compounds and phosphorus and thionyl halides in the absence and in the presence of tertiary bases. VI》. Authors are Berlak, Marianne C.; Gerrard, Wm..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Product Details of 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C.A. 41, 93d. The following yields (in %) of alkyl iodide were obtained from the resp. alc. and 0.33 mol. PI3 in CS2 at 15-20° in 24 h. (other exptl. conditions indicated): PrOH 40; iso-PrOH 20 (72 h. 21; 1 mol. 18); BuOH 43 (72 h. 61, 2.5 h. at b.p. 48; 1 mol. for 24 or 72 h. 56); sec-BuOH 60 (72 h. 58; 1 mol. 61); tert-BuOH 20 (also 72 h.; 1 mol. 17); sec-BuCH2OH 48 (68 h. 44, 1 mol. 45); Pr2CHOH 74 (1 mol. 80); C8H17OH 42 (1 mol. 56); C6H13CH(Me)OH (I) 36 (0.66 mol. for 24 or 72 h. 66, 1 mol. 75). (+)-I (6.5 g.) and 3.95 g. C5H5N in 50 cc. CS2 at -10°, treated with 6.9 g. PI3, give 9.3 g. C5H5N.HI; further addition of 13.8 g. PI3 gives 7.78 g. C6H13CHIMe, αD18 -56.8% BuOH and C8H17OH show a similar behavior. (-)-Dimethylhexylcarbinyl H phosphite (4.6 g., αD22 -12.6°) at -10°, treated (1 h.) with HI and kept 18 h. at 15° gives 5.93 g. (+)-C6H13CHIMe, αD20 45.8°. (BuO)2PHO (6.5 g.), treated 50 min. at -10° with HI and kept 30 min. at -10°, gives 2.65 g. BuI; if the reaction is carried out without cooling (temperature rise from 19 to 23°), there results 5.3 g. BuI. (RO)2HPO react much more readily with HI than with HCl or HBr. The mechanism of the reaction is discussed.

Different reactions of this compound(1-Iodo-2-methylbutane)Product Details of 616-14-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Why Are Children Getting Addicted To 4531-54-8

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8 require different conditions, so the reaction conditions are very important.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine( cas:4531-54-8 ) is researched.SDS of cas: 4531-54-8.Hiralben, S. Mehta; Shinghvi, Indrajeet; Raj, Hasumati A. published the article 《Development and validation of stability – indicating RP-HPLC chromatographic method by forced degradation studies for azathioprine by related substances》 about this compound( cas:4531-54-8 ) in International Journal of Pharmaceutical Sciences and Research. Keywords: azathioprine reverse phase high performance liquid chromatog. Let’s learn more about this compound (cas:4531-54-8).

Simple, rapid and reproducible stability-indicating methods were established for quant. determination of azathioprine using a, phenomenex 250 mm × 4.9 mm C18, 5 μm, inertsil and UV detection at 240 nm. The isocratic elution was used to quantify the analyte and the mobile phase was acetate buffer: acetonitrile: methanol (30: 35: 35) was pumped at 1.0 mL/min. The method was linear between 10-300 μg/mL, statistically validated for its linearity, precision and accuracy. In this study, degradation behavior of azathioprine was studied by subjecting the drug to various ICH stress conditions. The intra and inter day variation was found to be less than 1% showing high precision of the assay method. It was found that the excipients in the com. tablet did not interfere with the method. Developed method can routinely use for the estimation of azathioprine related compounds from the dosage form and also for stability sample.

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Final Thoughts on Chemistry for 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I require different conditions, so the reaction conditions are very important.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Gas chromatography of alkyl iodides. II. Influence of structure on retention time and sensitivity to electron capture detector, published in 1971, which mentions a compound: 616-14-8, mainly applied to alkyl iodides gas chromatog; iodides alkyl gas chromatog; gas chromatog alkyl iodides; chromatog gas alkyl iodides; electron capture detection alkyl iodides, Electric Literature of C5H11I.

The retention times and indexes observed for 34 alkyl iodides during electron-capture gas-liquid chromatog. on a 15% tricresyl phosphate/Chromosorb W (DMCS-treated)column are examined as functions of the number of C atoms, the I position, and the number and position of branchings in the alkyl iodide mols. The relative molar response of the electron-capture detector is useful for detector standardizations since it depends only on the standing current.

Different reactions of this compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Flexible application of in synthetic route 4531-54-8

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8 require different conditions, so the reaction conditions are very important.

SDS of cas: 4531-54-8. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Nucleophilic substitution reactions of 1-methyl-4,5-dinitroimidazole with aqueous ammonia or sodium azide. Author is Lian, Peng-Bao; Guo, Xiao-Jie; Wang, Jian-Long; Chen, Li-Zhen; Shen, Fan-Fan.

In this work, 5-amino-1-methyl-4-nitroimidazole was synthesized by amination reaction of 1-methyl-4,5-dinitroimidazole with aqueous ammonia in 95% yield. Meanwhile, one of its isomers, 4-amino-1-methyl-5-nitroimidazole as byproduct was obtained from the filtrate. Furthermore, nucleophilic substitution reaction of 1-methyl-4,5-dinitroimidazole with sodium azide gave 5-azido-1-methyl-4-nitroimidazole in 98% yield. The three compounds were characterized by IR, 1H and 13C NMR spectra, m.ps., and elemental anal. The structure of 4-amino-1-methyl-5-nitroimidazole was further confirmed by single crystal X-ray diffraction. These reactions indicate that the nitro group at position 5 of 1-methyl-4,5-dinitroimidazole is quite unstable, as well as partial substitution of nitro group at position 4 also occurred in aqueous ammonia. Only one nitro group of the two is involved in nucleophilic substitution reaction in each case.

Different reactions of this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Continuously updated synthesis method about 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Name: 1-Iodo-2-methylbutane. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Preparation of (S)-2-methylbutyl and (S)-sec-butyl ketones from optically active 2-methyl-1-butanol by the dithiane method. Author is Seebach, D.; Steinmueller, D..

Optically active aldehydes and ketones EtMeCHCRO (where R = H, Me, Ph, Me3Si, C5H11, or 1-cyclohexenyl) were prepared by treating EtMeCHCHO, obtained from EtMeCHCH2OH, with CH2(CH2SH)2 to give 2-(1-methylpropyl)-1,3-dithiane, which was then alkylated and hydrolyzed. The loss of optical activity was <20% for the reaction sequence. Different reactions of this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Simple exploration of 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Application In Synthesis of 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 1-Iodo-2-methylbutane( cas:616-14-8 ) is researched.Application In Synthesis of 1-Iodo-2-methylbutane.Schuler, Robert H.; Wojnarovits, Laszlo published the article 《Radical Yields in the Radiolysis of Branched Hydrocarbons: Tertiary C-H Bond Rupture in 2,3-Dimethylbutane, 2,4-Dimethylpentane, and 3-Ethylpentane》 about this compound( cas:616-14-8 ) in Journal of Physical Chemistry A. Keywords: radiolysis branched hydrocarbon tertiary carbon hydrogen bond rupture. Let’s learn more about this compound (cas:616-14-8).

Gel permeation chromatog. has been applied to iodine scavenging studies of the distribution of radicals produced in the radiolysis of sym. branched hydrocarbons 2,3-dimethylbutane, 2,4-dimethylpentane, and 3-ethylpentane. The principal iodides observed are those expected as a result of simple bond rupture. In the case of 2,3-dimethylbutane all five expected iodides are readily resolvable and it is shown that the loss of H from a tertiary position is favored over loss from a primary position by a factor of ∼10. A similar ratio is also observed for 2,4-dimethylpentane. The higher ratio of 15 observed for 3-ethylpentane indicates a dependence on the number of tertiary sites on the alkane. The relative yield of ∼3.3 for the loss of secondary and primary H atoms from 2,4-dimethylpentane and 3-ethylpentane is similar to that for normal alkanes, indicating a negligible effect of the adjacent tertiary carbon. In all three cases the rupture of terminal C-C bonds is relatively infrequent with C-C rupture occurring preferentially at the bonds adjacent to the tertiary carbon.

Different reactions of this compound(1-Iodo-2-methylbutane)Application In Synthesis of 1-Iodo-2-methylbutane require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Now Is The Time For You To Know The Truth About 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I require different conditions, so the reaction conditions are very important.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Walden inversion. XIII. The influence of substituting groups on optical rotation in the series of disubstituted acetic acids》. Authors are Levene, P. A.; Mikeska, L. A..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Synthetic Route of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

cf. C. A. 22, 1953. The conclusion that in the aliphatic series the carbinols and the structurally related halides rotate in opposite directions is substantiated by the study of a series of aliphatic substances derived from disubstituted acetic acids or their corresponding carbinols. Primary halides rotate in the opposite direction to the primary alcs. from which they were derived, while in passing from the corresponding thio to the sulfo derivative the change in rotation is in the same direction, though without change of sign. A decided uniformity was found in the effect on optical rotation of various substitutions of the CO2H group or of the alc. group of the corresponding carbinols, depending upon the position of the subsituting group in the polarity series, C = N > CO2Et > CO2H > CONH2 > COCl > CH2SO3H > CH2X > CH2SH > CH2OH > CH2NH2. The order in this series corresponds with the order of the same groups in polarity series determined by other methods. This relationship holds only for aliphatic substances containing only 1 asym. C atom and only 1 polar group. Active primary amyl alc. was halogenated without marked racemization, while in the rest of the series conversion to the halide from the carbinol by SOCl2, PCl5, HBr, HI, etc., as well as from the amine by NOCl2, led to complete racemization. Optically active halides were obtained in the latter case by the action of NOBr. d-Propylmethylacetic acid, [α]D25 5.58° (Et2O), with SOCl2 gave the d-chloride (I), b15 45-8°; [α]D25 4.06°. I, [α]D25 3.94° (Et2O), with concentrated aqueous NH4OH gave the d-amide, m. 78° (from H2O), [α]D25 5.79° (75% alc.). l-Amide, [α]D25-5.79° (75% alc.), distilled with P2O6 gave l-propylmethylacetonitrile (II), b2 30-2°, [α]D25-13.77°. II with Na-alc. gave d-2-propyl-2-methylethylamine (III), b4 28-30°, [α]D25 3.84°, whose HCl salt had [α]D25 1.51° (50% alc.), l-Propylmethylacetic acid, [α]D25-7.08° (Et2O), with HCl gas in alc. gave the Et ester, b4 78-80°, [α]D25-7.91°. d-Acid Et ester, [α]D25 5.67° (Et2O), with Na-alc. gave l-2-propyl-2-methylethanol (IV), b. 147-7.5°, [α]D25-1.23°. IV with PCl5 or NOCl gave dl-2-propyl-2-methylethyl chloride, b. 110-20°. III with NOBr gave l-2-propyl-2-methylethyl bromide, b10 55-65°, [α]D25-0.94° (Et2O). I with KHS gave d-propylmethylthiolacetic acid, b23 71-2°, [α]D25 7.49°. d-Butylmethylacetic acid (V), [α]D25 5.42° (Et2O), with SOCl2 gave the acid chloride (VI), b9 45-8°, [α]D25 5.06°. VI with NH4OH gave the amide (VII), m. 66° (from H2O), [α]D25 3.86° (75% alc.). VII distilled with P2O5 gave the nitrile (VIII), b9 43-50°, [α]D25 9.40°. In another experiment an amide, [α]D25-11.44°, gave a nitrile, [α]D25-27.09° (Et2O). VIII with Na-alc. gave l-2-butyl-2-methylethylamine, b15 49-54°, [α]D25-3.52° (Et2O), whose HCl salt had [α]D25-2.41° (H2O). V with HCl gas and alc. gave an Et ester, b9 58-62°, [α]D25 6.84°, which with Na-alc. gave d-2-butyl-2-methylethanol, b15 71-2°, [α]D25 2.47° (Et2O). d-Heptylmethylacetic acid (IX), b4 145-7°, [α]D25, whose Na salt, [α]D25 0.84° (H2O), was treated with SOCl2, yielding the acid chloride (X), b1 73-4°, [α]D25 4.89°. X with NH4OH gave the amide (XI), m. 78° (from 50% alc.), [α]D25 7.07° (95% alc.), XI with P2O5 gave the nitrile (XII), b7 85-94°, [α]D25 13.61°. XII with Na-alc. gave 1-2-heptyl-2-methylethylamine (XIII), b24, 103-5°, [α]D25-3.38°, whose HBr salt had [°]D25-4.61° (75% alc.), In another experiment an amine, [α]D25 6.05° (Et2O), was obtained from a nitrile, [α]D25 -15.10° (Et2O). An amine, [α]D25 6.05° (Et2O), was obtained from a HBr salt, [α]D25 5.91°. XIII with HBr (fuming) and NaNO2 gave d-2-heptyl-2-methylethyl bromide, b1 80-5°, [α]D25 2.18° (Et2O). l-Heptylmethylacetic acid, [α]D26 -8.72° (Et2O), with HCl gas and alc. gave the Et ester, b17 122-4°, [α]D25 -8.60°, which with Na-alc, gave d-2-heptyl-2-methylethanol, b0.4 80-2°, [α]D25 3.64°. d-Decylmethylacetic acid, b1 153°, [α]D25 8.47°, showed no rotation when neutralized with NaOH. l-Decylmethylacetic acid (XIV), [α]D25 -6.38° (Et2O), with SOCl2 gave the acid chloride (XV), b0.5 118-25°, [α]D25 -3.5°, which was hydrolyzed, yielding an acid, [α]D25 -5.78° (Et2O). XV with NH4OH gave the amide, m. 77° (from 50% alc.), [α]D25 -3.01° (95% alc.), which with P2O5 gave the nitrile, b0.5 108-10°, [α]D25 -10.87° (Et2O), which with Na-alc. gave d-2-decyl-2-methylethylamine (XVI), [α]D25 4.18°, whose HCl salt, m. 105-18°, [α]D25 3.17° (H2O). XIV with HCl gas and alc. gave an Et ester, b1 141°, [α]D25 -6.48°, which with Na-alc. gave l-2-decyl-2-methylethanol, b1.4 105°, [α]D25 2.34°, XVI with NOBr gave l-2-decyl-2-methylethyl bromide, b0.02 87-90°, [α]D25 -0.39. Primary l-amyl alc., [α]D25 -4.73° (Et2O), with HI gave d-2-ethyl-2-methylethyl iodide, b12 47-50°, [α]D25 3.92° (Et2O), which with KHS gave d-2-ethyl-2-methylethanethiol, b. 116-7°, [α]D25 2.99°. In another experiment an iodide, [α]D25 5.27° (Et2O), gave a mercaptan, [α]D25 6.92°, which with Ba(MnO4)2 gave d-2-ethyl-2-methylethanesulfonic acid, whose Ba salt had [α]D25 5.09° (H2O). A table of mol. rotations of the various derivatives, which do not necessarily agree with the exptl. figures, is appended. These values were calculated on the basis of the parent substance of the highest rotation. There is also a table of d.

Different reactions of this compound(1-Iodo-2-methylbutane)Synthetic Route of C5H11I require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of reaction temperature change on equilibrium 616-14-8

Different reactions of this compound(1-Iodo-2-methylbutane)SDS of cas: 616-14-8 require different conditions, so the reaction conditions are very important.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Primary active amyl halides》. Authors are Whitmore, Frank C.; Olewine, J. Harris.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).SDS of cas: 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Primary active AmOH (I) with SOCl2 in C5H5N give 77% of the AmCl, b140 50.5-1°, nD20 1.4125, n420 0.8852, [α]D28.5 1.66°. I and PBr3 at 5-15° give 29% of the AmBr, b140 69.6°, nD20 1.4450, d420 1.2239, [α]D25 3.75°. I and BzCl give 80% of the benzoate, b20 140.2°, nD20 1.4948, d420 0.9913, [α]D28 6.09°; with MeMgI this yields 17.5% of the AmI, b20 47.1°, nD20 1.4969, d42 1.5227, [α]D28 4.84°. Data are given for the constants of I after regeneration from the chloride or bromide through the Grignard reagents; the total racemization in the steps I → AmCl or AmBr → Grignard reagent → I is not over 10%.

Different reactions of this compound(1-Iodo-2-methylbutane)SDS of cas: 616-14-8 require different conditions, so the reaction conditions are very important.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem