Decrypt The Mystery Of 616-14-8

Compound(616-14-8)Electric Literature of C5H11I received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Yang, Xiu-qun; Liao, Bin; Yan, Xue-fen; Yang, Ya published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Electric Literature of C5H11I. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

This thesis developed an SPME-GC-MS method for the aroma components in Ficus tikoua Bur. fruit. At the same time, the solid-phase micro extraction conditions were optimized: extraction temperature was 50°C, the extraction time was 40 min, added 8 g of sodium chloride electrolyte solid extraction Frozen Ficus tikoua Bur. fruit was detected out of 152 kinds of volatile substances, substances detected in 99.03%of the total. The main aroma components were esters, accounting for 33.06%; alcs., accounting for 13.14%; alkanes, accounting for 13.18%; there ketones, aldehydes, acids and other substances. Higher levels of 10 kinds of aroma components were guaiacol (14.71%), cyclobutane carboxylic acid dodecyl ester (13.54%), n-tridecane (6.05%), 2-tridecanone (4.72%), cyclohexasiloxane (4.44%), cyclobutane carboxylic acid decyl ester (4.18%), Me nonyl ketone (3.62%), acetic acid (2.98%), cyclopentanecarboxylic acid thirteen ester (2.48%), 2-tetradecanol (2.31%) and so on.

Compound(616-14-8)Electric Literature of C5H11I received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Properties and Exciting Facts About 616-14-8

Compound(616-14-8)Application of 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Application of 616-14-8. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about An extension of the linear relationship between molecular rotation and bond refraction.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

Compound(616-14-8)Application of 616-14-8 received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The origin of a common compound about 616-14-8

Compound(616-14-8)Name: 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Cerebrospinal fluid lymphocytes in experimental allergic encephalomyelitis.》. Authors are Wilkerson, L D; Lisak, R P; Zweiman, B.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Name: 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

We report characteristics of the cerebrospinal fluid (CSF) pleocytosis (616+/-148 cells/microliter) that occurred in guinea-pigs with definite clinical experimental allergic encephalomyelitis developing 12 to 16 days after sensitization with homologous myelin basic protein. This pleocytosis was not present in the cerebrospinal fluid of a group of animals studied when still healthy, 9 or 10 days after similar sensitization. Eighty-nine per cent of cells in the CSF pleocytosis were small lymphocytes, 8% were larger lymphocytes and the remainder mostly monocytes. Of the lymphocytes, most were E-rosetting or null cells. B-cell markers were uncommon. The cellular patterns in this CSF pleocytosis appear to be similar to those seen in some delayed hypersensitivity responses.

Compound(616-14-8)Name: 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New learning discoveries about 616-14-8

Compound(616-14-8)Safety of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Safety of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Radical Yields in the Radiolysis of Branched Hydrocarbons: Tertiary C-H Bond Rupture in 2,3-Dimethylbutane, 2,4-Dimethylpentane, and 3-Ethylpentane. Author is Schuler, Robert H.; Wojnarovits, Laszlo.

Gel permeation chromatog. has been applied to iodine scavenging studies of the distribution of radicals produced in the radiolysis of sym. branched hydrocarbons 2,3-dimethylbutane, 2,4-dimethylpentane, and 3-ethylpentane. The principal iodides observed are those expected as a result of simple bond rupture. In the case of 2,3-dimethylbutane all five expected iodides are readily resolvable and it is shown that the loss of H from a tertiary position is favored over loss from a primary position by a factor of ∼10. A similar ratio is also observed for 2,4-dimethylpentane. The higher ratio of 15 observed for 3-ethylpentane indicates a dependence on the number of tertiary sites on the alkane. The relative yield of ∼3.3 for the loss of secondary and primary H atoms from 2,4-dimethylpentane and 3-ethylpentane is similar to that for normal alkanes, indicating a negligible effect of the adjacent tertiary carbon. In all three cases the rupture of terminal C-C bonds is relatively infrequent with C-C rupture occurring preferentially at the bonds adjacent to the tertiary carbon.

Compound(616-14-8)Safety of 1-Iodo-2-methylbutane received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(1-Iodo-2-methylbutane), if you are interested, you can check out my other related articles.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of reaction temperature change on equilibrium 616-14-8

From this literature《Optical rotations of configurationally related azides》,we know some information about this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotations of configurationally related azides》. Authors are Levene, P. A.; Rothen, Alexandre; Kuna, Martin.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Recommanded Product: 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Substances of the type MeCH[(CH2)n1X][(CH2)n2R], where n1 or n2 = 0 or an integer, X = a functional group and R = a normal alkyl, Ph or C6Hn group, can be classified into 2 categories, viz., those, typified by X = CHO, in which the configuration of the 1st members having n1 = 0 can be correlated by classical methods to those having n1 > 0, and those, typified by X = halogen, in which such correlation cannot be accomplished by classical methods. For the purpose of solving the latter problem the azides were chosen over the halides, inasmuch as they can be converted into the corresponding amines. The amines, while belonging to the 2nd category, can be correlated among themselves by a sufficiently reliable though nonclassical argument which will be reported later. The secondary azides were prepared by the action of NaN3 on the iodides and the amines by reduction of the azides with PtO2. The rotatory phenomena observed in the series of azides and halides were compared with those in the series of aldehydes and were found to be dissimilar in both series. Hence a comparison of these phenomena cannot be used for the correlation of the members of the series of halides and azides having n1 = 0 with those having n1 > 0. The following compounds were prepared: l-2-iodobutane, b. 111-18°, [M]D25 -24.1°, from the alc. and anhydrous HI in a bomb tube at room temperature for 2 days; d-2-azidobutane, b500 85°, d425 0.8619, nD25 1.4122, [M]D25 15.9°; d-2-aminobutane, [M]D25, 0.66° (in H2O), (HCl salt, [M]5875.625 -0.44° (in H2O)); l-2-iodoöctane, b1 52°, nD25 1.4863, d425 1.3158, [M]D25 -80.0°; d-2-azidoöctane, b9 68°, nD25 1.4332, d425 0.8555, [M]D25 43.4°, 42.5° (in heptane (I)); d-2-aminoöctane, b9 48°, nD25 1.4220, [M]D25 5.41°, (HCl salt, [M]D25 -6.44° (in H2O)); d-1-iodo-2-methylbutane, b. 145-6°, nD25 1.4950, [M]D25 8.28°, maximum [M]D25 11.1°; d-1-azido-2-methylbutane, b138 72°, nD25 1.4240, d425 0.8770, [M]D25 8.61°, maximum [M]D25 11.6°; l-1-amino-2-methylbutane, b12 40-5°, [M]5875.625 -0.21° (in H2O); l-1-azido-2-methylhexane, b15 59-60°, [α]D25 -0.30°; d-1-iodo-2-methylnonane, b4 86°, d425 1.254, [M]D25 2.54°; l-1-azido-2-methylnonane, b10 98-102°, d425 0.8658, nD25 1.4430, [M]D25 -0.74°; l-1-iodo-3-methylpentane, b12 54°, d425 1.3934, nD25 1.4866, [M]D25 -16.1°, maximum [M]D25 -43.9°; l-1-azido-3-methylpentane, b. 145-8°, nD25 1.4300, [M]D25 -9.63°, maximum [M]5875.625 -26.3° (in I); d-1-iodo-4-methylhexane, b13 74-5°, b103 124-6°, nD25 1.4852, d425 1.3579, [M]D25 8.20°, maximum [M]D25 26.2°; d-1-azido-4-methylhexane, b418 157°, d425 0.8636, nD25 1.4323, [M]5875.625 5.41°, maximum [M]5875.625 17.3° (in I.). All values for [M] are for the homogenous substance unless otherwise stated.

From this literature《Optical rotations of configurationally related azides》,we know some information about this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Fun Route: New Discovery of 4531-54-8

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Recommanded Product: 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Brusac, Edvin; Jelicic, Mario-Livio; Amidzic Klaric, Daniela; Nigovic, Biljana; Keser, Sabina; Mornar, Ana researched the compound: 1-Methyl-4-nitro-1H-imidazol-5-amine( cas:4531-54-8 ).Recommanded Product: 1-Methyl-4-nitro-1H-imidazol-5-amine.They published the article 《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》 about this compound( cas:4531-54-8 ) in Analytical Methods. Keywords: HPLC stability compatibility azathioprine folic acid monolayer dose combination. We’ll tell you more about this compound (cas:4531-54-8).

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Recommanded Product: 1-Methyl-4-nitro-1H-imidazol-5-amine, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 616-14-8

From this literature《On labeling with generator nuclides》,we know some information about this compound(616-14-8)Application of 616-14-8, but this is not all information, there are many literatures related to this compound(616-14-8).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called On labeling with generator nuclides, published in 1983, which mentions a compound: 616-14-8, Name is 1-Iodo-2-methylbutane, Molecular C5H11I, Application of 616-14-8.

Short-lived radioisotopes separated from radionuclide generators are widely used. The possibilities of labeling with the daughter nuclides of the com. available Mo/Tc-, Sn/In- and Te/I- generators and of the self-made Ba/La-generator in industrial tracer experiments are presented. The transfer of the daughter nuclides from the generator eluates into organic phases and the labeling of oil-phases and solid particles were investigated. The simple, quick, and efficient methods developed are suitable for routine application under industrial conditions. Some examples of industrial applications of the generator nuclides are given.

From this literature《On labeling with generator nuclides》,we know some information about this compound(616-14-8)Application of 616-14-8, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Simple exploration of 4531-54-8

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Synthetic Route of C4H6N4O2, but this is not all information, there are many literatures related to this compound(4531-54-8).

Brusac, Edvin; Jelicic, Mario-Livio; Amidzic Klaric, Daniela; Nigovic, Biljana; Keser, Sabina; Mornar, Ana published an article about the compound: 1-Methyl-4-nitro-1H-imidazol-5-amine( cas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C ).Synthetic Route of C4H6N4O2. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:4531-54-8) through the article.

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

From this literature《Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination》,we know some information about this compound(4531-54-8)Synthetic Route of C4H6N4O2, but this is not all information, there are many literatures related to this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discover the magic of the 616-14-8

From this literature《Vital signs: trends in use of long-acting reversible contraception among teens aged 15-19 years seeking contraceptive services—United States, 2005-2013.》,we know some information about this compound(616-14-8)Recommanded Product: 616-14-8, but this is not all information, there are many literatures related to this compound(616-14-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Vital signs: trends in use of long-acting reversible contraception among teens aged 15-19 years seeking contraceptive services—United States, 2005-2013.》. Authors are Romero, Lisa; Pazol, Karen; Warner, Lee; Gavin, Lorrie; Moskosky, Susan; Besera, Ghenet; Loyola Briceno, Ana Carolina; Jatlaoui, Tara; Barfield, Wanda; Centers for Disease Control and Prevention (CDC).The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Recommanded Product: 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

BACKGROUND: Nationally, the use of long-acting reversible contraception (LARC), specifically intrauterine devices (IUDs) and implants, by teens remains low, despite their effectiveness, safety, and ease of use. METHODS: To examine patterns in use of LARC among females aged 15-19 years seeking contraceptive services, CDC and the U.S. Department of Health and Human Services’ Office of Population Affairs analyzed 2005-2013 data from the Title X National Family Planning Program. Title X serves approximately 1 million teens each year and provides family planning and related preventive health services for low-income persons. RESULTS: Use of LARC among teens seeking contraceptive services at Title X service sites increased from 0.4% in 2005 to 7.1% in 2013 (p-value for trend <0.001). Of the 616,148 female teens seeking contraceptive services in 2013, 17,349 (2.8%) used IUDs, and 26,347 (4.3%) used implants. Use of LARC was higher among teens aged 18-19 years (7.6%) versus 15-17 years (6.5%) (p<0.001). The percentage of teens aged 15-19 years who used LARC varied widely by state, from 0.7% (Mississippi) to 25.8% (Colorado). CONCLUSIONS: Although use of LARC by teens remains low nationwide, efforts to improve access to LARC among teens seeking contraception at Title X service sites have increased use of these methods. IMPLICATIONS FOR PUBLIC HEALTH PRACTICE: Health centers that provide quality contraceptive services can facilitate use of LARC among teens seeking contraception. Strategies to address provider barriers to offering LARC include: 1) educating providers that LARC is safe for teens; 2) training providers on LARC insertion and a client-centered counseling approach that includes discussing the most effective contraceptive methods first; and 3) providing contraception at reduced or no cost to the client. From this literature《Vital signs: trends in use of long-acting reversible contraception among teens aged 15-19 years seeking contraceptive services—United States, 2005-2013.》,we know some information about this compound(616-14-8)Recommanded Product: 616-14-8, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Downstream Synthetic Route Of 616-14-8

From this literature《Total Synthesis of (-)-Cylindrocyclophane F: A Yardstick for Probing New Catalytic C-C Bond-Forming Methodologies》,we know some information about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Total Synthesis of (-)-Cylindrocyclophane F: A Yardstick for Probing New Catalytic C-C Bond-Forming Methodologies, published in 2018, which mentions a compound: 616-14-8, Name is 1-Iodo-2-methylbutane, Molecular C5H11I, Application In Synthesis of 1-Iodo-2-methylbutane.

A short and efficient total synthesis of the C2-sym. (-)-cylindrocyclophane F is presented, using a cross olefin metathesis dimerization strategy for construction of the [7,7]-paracyclophane macrocycle. The synthesis of the dimerization building block includes a Pd-catalyzed sp3-sp2 Negishi cross coupling of a sterically hindered Zn-reagent with an aromatic triflate, an enantiospecific Zn-catalyzed sp3-sp3 cross coupling of an α-hydroxy ester triflate with a Grignard reagent and the application of an enantioselective Rh-catalyzed C-allylation of an electron rich arene.

From this literature《Total Synthesis of (-)-Cylindrocyclophane F: A Yardstick for Probing New Catalytic C-C Bond-Forming Methodologies》,we know some information about this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane, but this is not all information, there are many literatures related to this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem