Some scientific research tips on 4531-54-8

This literature about this compound(4531-54-8)Computed Properties of C4H6N4O2has given us a lot of inspiration, and I hope that the research on this compound(1-Methyl-4-nitro-1H-imidazol-5-amine) can be further advanced. Maybe we can get more compounds in a similar way.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Formation of 4(5)-aminoglyoxalines. I, published in 1930, which mentions a compound: 4531-54-8, mainly applied to , Computed Properties of C4H6N4O2.

The only evidence at present that 4(5)-aminoglyoxalines are true aromatic amines is the formation, after diazotization, of colored soln with aqueous β-C10H7ONa. Reduction of 4(5)-nitro-2-methyl- and 4(5)-nitroglyoxalines with Fe and H2O, FeSO4 and NaOH, Na2S or activated Al gave no basic material. Et glyoxaline-4(5)-carboxylate and N2H4.H2O, heated on the H2O bath for 30 min., give nearly quant. glyoxaline-4(5)-carboxyhydrazide, crystallizing with 1H2O, m. 213°, reduces NH4OH-AgNO3 slowly but not Fehling solution; picrate, yellow, m. 223° (decomposition), crystallizes from 85 parts boiling H2O. With HNO3 there results glyoxaline-4(5)-carboxyazide (I), decomposes explosively at 137°; heating with H2O does not give the urea; the green solution gives an amorphous picrate, chars 230°. Boiling I with absolute EtOH for 4 hrs. gives 42.2% of 4(5)-carbethoxyaminoglyoxaline, m. 180°; picrate, golden, decomposes 210°, crystallizes from 60 parts boiling H2O; nitrate (II), decomposes 143°. I and MeOH give 50% of the corresponding carbomethoxy derivative, m. 175°; picrate, decomposes 243°. Neither derivative could be hydrolyzed by acid or alkali. II and concentrated H2SO4 give 58% of 5(4)-nitro-4(5)-carbethoxyaminoglyoxaline, m. 234° (decomposition); this could not be converted by 10% Na2CO3 into the corresponding amine. 5-Chloro-4-nitro-1-methylglyoxaline and EtOH-NH3, heated 4 hrs. at 140°, give 63.7% of the 5-NH2 derivative, yellow, m. 303° (decomposition), crystallizes from 170 parts boiling H2O; it does not form an Ac derivative, a benzylidene derivative or a picrate; after treatment with HNO2, alk. C10H7ONa gives a greenish blue color and alk. m-C6H4(OH)2 a violet color. With 16% HCl, HNO2 is liberated and α-methylamino-α-hydroxyacetamide, pale brown, m. 140°, is formed.

This literature about this compound(4531-54-8)Computed Properties of C4H6N4O2has given us a lot of inspiration, and I hope that the research on this compound(1-Methyl-4-nitro-1H-imidazol-5-amine) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Awesome and Easy Science Experiments about 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane, illustrating the importance and wide applicability of this compound(616-14-8).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 1-Iodo-2-methylbutane(SMILESS: CCC(CI)C,cas:616-14-8) is researched.Name: 1-Iodo-2-methylbutane. The article 《Preparation of standard mixtures of iodoalkanes by irradiation of iodine solutions in alkanes》 in relation to this compound, is published in Journal of Chromatography. Let’s take a look at the latest research on this compound (cas:616-14-8).

Mixtures of iodine with pentane, hexane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2,2-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, octane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were subjected to γ-irradiation and the gas chromatog. retention indexes of the resulting iodoalkanes determined

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discover the magic of the 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane, illustrating the importance and wide applicability of this compound(616-14-8).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Palladium-Catalyzed Arylation of Unactivated γ-Methylene C(sp3)-H and δ-C-H Bonds with an Oxazoline-Carboxylate Auxiliary.Name: 1-Iodo-2-methylbutane.

A palladium-catalyzed arylation of unactivated γ-methylene C(sp3)-H and remote δ-C-H bonds by using an oxazoline-carboxylate directing group has been developed. Arylation occurs with a broad substrate scope and high tolerance of functional groups (i.e., halogen, nitro, cyano, ether, trifluoromethyl, amine, and ester). The oxazoline-type auxiliary can be removed under acidic conditions.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Name: 1-Iodo-2-methylbutane, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Downstream Synthetic Route Of 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I, illustrating the importance and wide applicability of this compound(616-14-8).

Electric Literature of C5H11I. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Gamma radiolysis of branched chain hydrocarbons. 2,3-Dimethylbutane. Author is Castello, Gianrico; Grandi, Francesco; Munari, Stelio.

The γ-radiolysis of liquid 2,3-dimethylbutane at room temperature was investigated under vacuum. Iodine was used as a free radical scavenger and the formed alkyl iodides were analyzed by gas chromatog. with electron capture detector. Irradiations of frozen 2,3-dimethylbutane at 77°K were also performed. The fragmentation products and many of those having a number of C atoms higher than the parent were identified and measured. The formation of the identified heavy products is mainly due to recombination of radicals, as demonstrated by the comparison between their yields and those of alkyl iodides.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Electric Literature of C5H11I, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Final Thoughts on Chemistry for 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Application of 616-14-8, illustrating the importance and wide applicability of this compound(616-14-8).

Application of 616-14-8. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Kinetics, products and mechanism of O(3P) atom reactions with alkyl iodides. Author is Barnes, Ian.

Alkyl halides are an important source of halogens in the atm. In the case of alkyl iodides, relative kinetic studies of their OH reactions in photoreactors are complicated by fast reactions with the O(3P) atoms generated by the photochem. OH radical sources. In the present study, the relative kinetic technique was applied in large and small photoreactors to measure rate coefficients for the reaction of O(3P) atoms with a series of alkyl iodides at room temperature and atm. pressure. The products formed in N2 were also investigated. Alkenes and HOI are the major products of the reactions and the alkene was quantified for the majority of the alkyl iodides studied.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Application of 616-14-8, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Development of a HPLC-DAD stability-indicating method and compatibility study of azathioprine and folic acid as a prerequisite for a monolayer fixed-dose combination, published in 2021, which mentions a compound: 4531-54-8, mainly applied to HPLC stability compatibility azathioprine folic acid monolayer dose combination, SDS of cas: 4531-54-8.

Adherence in chronic diseases is a major problem which can be combated by prescribing fixed-dose combinations in the therapy of the disease. Thus, a combination of azathioprine and folic acid in the treatment of inflammatory bowel disease is highly required, but prior to formulation development, chem. compatibility of the two drugs needs to be investigated. In this work, differential scanning calorimetry, isothermal stress testing, in vitro dissolution and forced degradation studies were utilized to investigate compatibility. Moreover, a stability-indicating HPLC-DAD method for the determination of parent drugs and five of their impurities was developed, validated and applied to the inhouse sample. Compatibility testing revealed no noteworthy interactions of the two drug substances. Furthermore, forced degradation showed no substantial differences between the degradation profiles of each active pharmaceutical ingredient, their mixture and the inhouse sample, further reinforcing the claim of compatibility. Lastly, the inhouse sample was analyzed: it was shown to conform to the requirements of relevant regulatory documents for all the investigated analytes, demonstrating the method’s viability for use in formulation and process development. Our results give way to the possibility of realization of said fixed-dose combination.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)SDS of cas: 4531-54-8, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Chemistry Milestones Of 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Computed Properties of C5H11I, illustrating the importance and wide applicability of this compound(616-14-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Analysis of rotatory dispersions of configurationally related halides》. Authors are Levene, P. A.; Rothen, Alexandre; Marker, R. E..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Computed Properties of C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

Rotatory dispersion curves of halides of the type HMeRC(CH2)nX (X = Cl, Br, I; R = alkyl group; n = 0, 1, 2 or 3) are analyzed in the visible and the ultraviolet regions. The 3 halogen atoms function similarly with respect to the character of this curve in compounds of identical structure. A periodicity in the sign of some of the partial contributions of the halogen atom occurs with increase in n. The course of the rotatory dispersion when n = 1 is anomalous. An attempt is made to apply results when n > 0 to the sign of rotation for compounds where n = 0. When X = COOH, CHO, CN, CHMe2, etc., no complete analogy exists between this group and the group where X is a halogen. [M]D25 maximum (homogeneous) is given for the 16 compounds where X = Br, n = 1, 2, 3, 4, and R = Et, Pr, Bu, pentyl, and for the compound HMeEtC(CH2)5Br. Absorption spectra are given for λ 2100-3300 for 5 iodides. Rotatory dispersion curves are given for the compounds HMeEtCCH2I, HMe(C6H13)CCH2I, HMeEtCCH2Br and HMeEtCCH2Cl. [M]D25 maximum, nD25, d425 (vacuum) and rotatory dispersions (numerical) are given for several other compounds in this series. Differences between the interpretation of the dispersions of the iodides given by the authors (C. A. 27, 951) and that given by Kuhn (C. A. 29, 7159.1) are due to substantial differences between their exptl. data.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Computed Properties of C5H11I, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A new application about 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine, illustrating the importance and wide applicability of this compound(4531-54-8).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 4531-54-8, is researched, SMILESS is NC1=C([N+]([O-])=O)N=CN1C, Molecular C4H6N4O2Journal, Acta Poloniae Pharmaceutica called Nitroimidazoles. VI. Partition coefficients and tautomerism of simple nitroimidazoles, Author is Suwinski, Jerzy; Salwinska, Ewa; Watras, Jan; Widel, Maria, the main research direction is nitroimidazole derivative partition coefficient tautomerism.Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine.

Octanol-water partition coefficients (P) were determined for 42 simple nitroimidazoles with Me, Cl, Br, MeO, NH2, and NO2 substituents. Correlation between log P and the substituent constants πX of Hansch and fX of Nys-Rekker was derived. For the N-methylated compounds, the average value of πN-CH3 was calculated to be -0.30. Significance of log P measurement in estimating the tautomeric equilibrium in 4(5)-nitroimidazoles is discussed in detail.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Reference of 1-Methyl-4-nitro-1H-imidazol-5-amine, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of the change of synthetic route on the product 4531-54-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Electric Literature of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Imidazole series. XX. Aminonitroimidazoles and diaminoimidazoles》. Authors are Kochergin, P. M.; Verenikina, S. G.; Bushueva, K. S..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Electric Literature of C4H6N4O2. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

cf. preceding abstract The aminonitroimidazoles I-XII were prepared by heating the corresponding nitrochloroimidazoles with a 8-15% alc. NH3 solution at 120-50° for 5-10 hrs. The products I, VII, and XII were obtained in the presence of CuSO4 catalyst (formula, R, m.p., and % yield 131-1.5°, 15-20; VII, iso-Bu, 108-10°, 15; VIII, H, 222.5-23°, 30.5; IX, Me, 198-9°, 39.5; X, Et, 160-1°, 58; XI, Pr, 130-1°, 32; XII, iso-Bu, 129-30°, 21.5. The hydrogenation of II in Ac2O in the presence of Raney Ni gave 1-ethyl-2-methyl-4,5-diaminoimidazole diacetate at 30-45° and initial H pressure of 10 atm. and tetraacetate at 50-80° and 100 atm.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Methyl-4-nitro-1H-imidazol-5-amine)Electric Literature of C4H6N4O2, illustrating the importance and wide applicability of this compound(4531-54-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Derivation of elementary reaction about 616-14-8

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Product Details of 616-14-8, illustrating the importance and wide applicability of this compound(616-14-8).

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotation and atomic dimension》. Authors are Brauns, D. H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Product Details of 616-14-8. Through the article, more information about this compound (cas:616-14-8) is conveyed.

This is a discussion (without new exptl. data) of a modified Guye’s law using the differences in at. dimensions, F-Cl, Cl-Br, and Br-I. B. tabulates the sp. and mol. rotations of the halogen compounds obtained by replacing the O-acetyl group of the 1st asym. C atom of acetyl sugars by F, Cl, Br, and I and for these and related compounds formulates 2 different rules: (1) when the halogen is attached directly to the asym. C atom the sp. rotations show differences proportional to the differences in at. dimensions, and (2) when the halogen is attached indirectly to the asym. C atom the mol. rotations show differences proportional to the differences in at. dimensions.

In addition to the literature in the link below, there is a lot of literature about this compound(1-Iodo-2-methylbutane)Product Details of 616-14-8, illustrating the importance and wide applicability of this compound(616-14-8).

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem