Brief introduction of 4531-54-8

After consulting a lot of data, we found that this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Formation of 4(5)-aminoglyoxalines. I》. Authors are Balaban, Isidore E..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Name: 1-Methyl-4-nitro-1H-imidazol-5-amine. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The only evidence at present that 4(5)-aminoglyoxalines are true aromatic amines is the formation, after diazotization, of colored soln with aqueous β-C10H7ONa. Reduction of 4(5)-nitro-2-methyl- and 4(5)-nitroglyoxalines with Fe and H2O, FeSO4 and NaOH, Na2S or activated Al gave no basic material. Et glyoxaline-4(5)-carboxylate and N2H4.H2O, heated on the H2O bath for 30 min., give nearly quant. glyoxaline-4(5)-carboxyhydrazide, crystallizing with 1H2O, m. 213°, reduces NH4OH-AgNO3 slowly but not Fehling solution; picrate, yellow, m. 223° (decomposition), crystallizes from 85 parts boiling H2O. With HNO3 there results glyoxaline-4(5)-carboxyazide (I), decomposes explosively at 137°; heating with H2O does not give the urea; the green solution gives an amorphous picrate, chars 230°. Boiling I with absolute EtOH for 4 hrs. gives 42.2% of 4(5)-carbethoxyaminoglyoxaline, m. 180°; picrate, golden, decomposes 210°, crystallizes from 60 parts boiling H2O; nitrate (II), decomposes 143°. I and MeOH give 50% of the corresponding carbomethoxy derivative, m. 175°; picrate, decomposes 243°. Neither derivative could be hydrolyzed by acid or alkali. II and concentrated H2SO4 give 58% of 5(4)-nitro-4(5)-carbethoxyaminoglyoxaline, m. 234° (decomposition); this could not be converted by 10% Na2CO3 into the corresponding amine. 5-Chloro-4-nitro-1-methylglyoxaline and EtOH-NH3, heated 4 hrs. at 140°, give 63.7% of the 5-NH2 derivative, yellow, m. 303° (decomposition), crystallizes from 170 parts boiling H2O; it does not form an Ac derivative, a benzylidene derivative or a picrate; after treatment with HNO2, alk. C10H7ONa gives a greenish blue color and alk. m-C6H4(OH)2 a violet color. With 16% HCl, HNO2 is liberated and α-methylamino-α-hydroxyacetamide, pale brown, m. 140°, is formed.

After consulting a lot of data, we found that this compound(4531-54-8)Name: 1-Methyl-4-nitro-1H-imidazol-5-amine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Discover the magic of the 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Organometallics called Secondary to normal alkyl group rearrangements in octahedral iridium(III) complexes. 1. Monoalkyl derivatives, Author is Bennett, Martin A.; Crisp, Geoffrey T., which mentions a compound: 616-14-8, SMILESS is CCC(CI)C, Molecular C5H11I, Recommanded Product: 1-Iodo-2-methylbutane.

sec-Alkyliridium(III) complexes IrYIR(CO)L2 (R = sec-alkyl; Y = Cl, I; L = PMe3, PMe2Ph), formed by oxidative addition of sec-alkyl iodides to IrY(CO)L2, rearrange cleanly by a first-order process to the n-alkyl isomers on dissolution in CH2Cl2 containing protic solvents. The order of efficacy of these solvents in promoting alkyl group rearrangement is CF3CO2H >> CH3OH >> C2H5OH > CH3CO2H ∼ PrOH > (CH3)2CHOH, while in the more strongly coordinating medium of THF the order is H2O >> CH3OH. These orders correlate with the anion-solvating ability of the solvents and, together with the observed retardation by added iodide ion, suggest that the rate-determining step in the rearrangement is dissociation of iodide ion trans to the sec-alkyl group. Rapid, reversible β-hydride elimination in the resulting cation and stereospecific return of iodide ion trans to the resulting n-alkyl group complete the process. The rearrangement is promoted by increasing bulk, both of the alkyl group, up to a certain limit, and of the tertiary phosphine (PMe2Ph > PMe3). Treatment of IrClI{CH(CH3)2}(CO)(PMe2Ph)2 with AgBF4 in MeCN induces immediate alkyl group rearrangement to give the n-propyliridium(III) salt [IrClPr(CO)(NCMe)(PMe2Ph)2]BF4. Studies of analogous CD2CH3 compounds suggest that they, and presumably other n-alkyliridium(III) complexes, undergo reversible β-hydride elimination more slowly than the sec-alkyl complexes. The D labels in the isobutyl-d2 complex IrClI{CD2CH(CH3)2}(CO)(PMe3)2 scramble over all the alkyl C atoms when the compound is heated in CD2Cl2/CD3OD, indicating that a tert-butyliridium(III) species is accessible. Surprisingly, the complexes IrClI{CH2CH(CH3)CH2CH3}(CO)(PMe3)2 and IrClI{CH2CH2CH(CH3)2}(CO)(PMe3)2 do not interconvert under the same conditions, implying that a tert-pentylirdium(III) species cannot be formed. The results are compared with alkyl group rearrangements that occur in other transition-metal systems, especially those promoted by dissociation of Ph3P in (η-C5H5)FeR(CO)(PPh3).

After consulting a lot of data, we found that this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

The effect of the change of synthetic route on the product 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Radulovic, Niko S.; Zivkovic Stosic, Milena Z. researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Reference of 1-Iodo-2-methylbutane.They published the article 《Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax》 about this compound( cas:616-14-8 ) in Phytochemistry (Elsevier). Keywords: Primula veris phenylalkane derivative secondary alc branched fatty acid; 1-Phenylalkane-1,3-diones; 2-Methylalkanoic and 3-methylalkanoic acids; 3-Oxo-1-phenylalkan-1-yl acetates; Branched long-chain wax constituents; Primula veris L.; Primulaceae; sec-Alcohols; syn-1-Phenylalkane-1,3-diyl diacetates. We’ll tell you more about this compound (cas:616-14-8).

Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatog. of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcs. (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds The structural/stereochem. elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatog. retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatog. fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and β-Me substituted fatty acids were detected herein for the first time in the kingdom Plantae.

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Can You Really Do Chemisty Experiments About 4531-54-8

After consulting a lot of data, we found that this compound(4531-54-8)SDS of cas: 4531-54-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Formation of 4(5)-aminoglyoxalines. I》. Authors are Balaban, Isidore E..The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).SDS of cas: 4531-54-8. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The only evidence at present that 4(5)-aminoglyoxalines are true aromatic amines is the formation, after diazotization, of colored soln with aqueous β-C10H7ONa. Reduction of 4(5)-nitro-2-methyl- and 4(5)-nitroglyoxalines with Fe and H2O, FeSO4 and NaOH, Na2S or activated Al gave no basic material. Et glyoxaline-4(5)-carboxylate and N2H4.H2O, heated on the H2O bath for 30 min., give nearly quant. glyoxaline-4(5)-carboxyhydrazide, crystallizing with 1H2O, m. 213°, reduces NH4OH-AgNO3 slowly but not Fehling solution; picrate, yellow, m. 223° (decomposition), crystallizes from 85 parts boiling H2O. With HNO3 there results glyoxaline-4(5)-carboxyazide (I), decomposes explosively at 137°; heating with H2O does not give the urea; the green solution gives an amorphous picrate, chars 230°. Boiling I with absolute EtOH for 4 hrs. gives 42.2% of 4(5)-carbethoxyaminoglyoxaline, m. 180°; picrate, golden, decomposes 210°, crystallizes from 60 parts boiling H2O; nitrate (II), decomposes 143°. I and MeOH give 50% of the corresponding carbomethoxy derivative, m. 175°; picrate, decomposes 243°. Neither derivative could be hydrolyzed by acid or alkali. II and concentrated H2SO4 give 58% of 5(4)-nitro-4(5)-carbethoxyaminoglyoxaline, m. 234° (decomposition); this could not be converted by 10% Na2CO3 into the corresponding amine. 5-Chloro-4-nitro-1-methylglyoxaline and EtOH-NH3, heated 4 hrs. at 140°, give 63.7% of the 5-NH2 derivative, yellow, m. 303° (decomposition), crystallizes from 170 parts boiling H2O; it does not form an Ac derivative, a benzylidene derivative or a picrate; after treatment with HNO2, alk. C10H7ONa gives a greenish blue color and alk. m-C6H4(OH)2 a violet color. With 16% HCl, HNO2 is liberated and α-methylamino-α-hydroxyacetamide, pale brown, m. 140°, is formed.

After consulting a lot of data, we found that this compound(4531-54-8)SDS of cas: 4531-54-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New downstream synthetic route of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Application In Synthesis of 1-Iodo-2-methylbutane. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about An extension of the linear relationship between molecular rotation and bond refraction. Author is Poh, Bo-Long.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Wu, Yachuang’s team published research in European Journal of Medicinal Chemistry in 2018-10-05 | CAS: 220655-09-4

European Journal of Medicinal Chemistry published new progress about Antibacterial agents. 220655-09-4 belongs to class thiomorpholine, name is tert-Butyl thiomorpholine-4-carboxylate, and the molecular formula is C9H17NO2S, Synthetic Route of 220655-09-4.

Wu, Yachuang published the artcileSynthesis and antibacterial activity evaluation of novel biaryloxazolidinone analogues containing a hydrazone moiety as promising antibacterial agents, Synthetic Route of 220655-09-4, the main research area is linezolid hydrazone analog synthesis bactericide; Antibacterial activity; Biaryloxazolidinone; Gram-positive organisms; Hydrazone moiety.

A series of linezolid analogs containing a hydrazone moiety were designed, synthesized and evaluated for their antibacterial activity. Most compounds exhibited more potent antibacterial activity against S. aureus, MRSA, MSSA, LREF and VRE pathogens as compared with linezolid and radezolid. Compounds 9a, 9c, 9f, 9g, 10m and 10t (I – VI, resp.) were more potent against tested clin. isolates of MRSA, MSSA, VRE and LREF as compared to linezolid. Compound 9a (I) exhibited comparable activity with linezolid against human MAO-A for safety evaluation and showed moderate metabolism in human liver microsome. The most promising compound 9a showed remarkable antibacterial activity against S.aureus, MRSA, MSSA, LREF and VRE pathogens with MIC value of 0.0675 mg/mL, resp., which was 15- to 30-fold more potent than linezolid.

European Journal of Medicinal Chemistry published new progress about Antibacterial agents. 220655-09-4 belongs to class thiomorpholine, name is tert-Butyl thiomorpholine-4-carboxylate, and the molecular formula is C9H17NO2S, Synthetic Route of 220655-09-4.

Referemce:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

New learning discoveries about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Action of ionizing radiation on simple organic compounds》. Authors are Napier, K. H.; Green, J. H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Reference of 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

I131 in a hydrocarbon was irradiated either with β-rays from a 500 mc. Sr90-Y90 source or with γ-rays from a 5 c. Cs137 source. The distribution of resulting iodinated products were analyzed by gas chromatography. From butane the following percentages of alkyl iodides were obtained: methyl, ethyl, n-propyl, sec-butyl, n-butyl (9, 20, 2, 47, 22, resp.). At some stages in the radiolysis, HI can be as high as 20%.

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Top Picks: new discover of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Optical rotation and atomic dimension》. Authors are Brauns, D. H..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Reference of 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

This is a discussion (without new exptl. data) of a modified Guye’s law using the differences in at. dimensions, F-Cl, Cl-Br, and Br-I. B. tabulates the sp. and mol. rotations of the halogen compounds obtained by replacing the O-acetyl group of the 1st asym. C atom of acetyl sugars by F, Cl, Br, and I and for these and related compounds formulates 2 different rules: (1) when the halogen is attached directly to the asym. C atom the sp. rotations show differences proportional to the differences in at. dimensions, and (2) when the halogen is attached indirectly to the asym. C atom the mol. rotations show differences proportional to the differences in at. dimensions.

After consulting a lot of data, we found that this compound(616-14-8)Reference of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

An update on the compound challenge: 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Quality Control of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Characteristic group frequencies of bromo- and iodoalkanes in the cesium bromide region》. Authors are Bentley, F. F.; McDevitt, N. T.; Rozek, Adele L..The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Quality Control of 1-Iodo-2-methylbutane. Through the article, more information about this compound (cas:616-14-8) is conveyed.

The infrared spectra of 74 normal and branched bromo- and iodoalkanes were recorded and studied, 667-286 cm.-1 The number and position of the frequencies characteristic of the C–X stretching vibration are dependent on the rotational isomers present as well as the structure of the alkyl substituents in the vicinity of the C–X group. Conformational structures and representative spectra are presented along with correlation charts which list the C–X stretching vibration for various primary, secondary, and tertiary bromo- and iodoalkanes.

After consulting a lot of data, we found that this compound(616-14-8)Quality Control of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Simple exploration of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Two Distinct Thermal Stabilities of DNA and Enzymatic Activities of DNase I in a Multistep Assembly with Carbazole Ligands: Different Binding Characteristics for Duplex and Quadruplex DNA.Name: 1-Iodo-2-methylbutane.

A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′-(9-ethyl-9 H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1 H-imidazol-3-ium)) adopts two different binding states (binding states I and II) in its interactions with calf-thymus (ct-) DNA. Two distinct binding states were identified by biphasic UV/Vis and CD spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct-DNA, (Im+)2Cz binds to nearly every part of ct-DNA (binding state I). By contrast, an increased concentration of ct-DNA results in a switch in the DNA-binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2-((6-bromo-9-ethyl-9 H-carbazol-3-yl)ethynyl)-1,3-dimethyl-1 H-imidazol-3-ium) also shows biphasic UV/Vis spectral changes during the titration of ct-DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct-DNA. The stepwise equilibrium of the ligand-DNA-complex formation is capable of switching the thermal stability of ct-DNA, as well as the enzymic activity of DNase (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct-DNA and stabilize the double-helix structure, which results in a larger increase in the melting temperature of the ct-DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymic activity of DNase I in binding state I, although the enzymic activity is recovered once the binding state of the ligand-DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G-quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct-DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G-quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G-quadruplex DNA.

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem