What unique challenges do researchers face in 4531-54-8

The article 《Synthesis of imidazo[4,5-b]pyrazine nucleosides》 also mentions many details about this compound(4531-54-8)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine, you can pay attention to it, because details determine success or failure

Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Synthesis of imidazo[4,5-b]pyrazine nucleosides. Author is Panzica, Raymond P.; Townsend, Leroy B..

5,6-Dimethyl-1-(β-D-ribofuranosyl)imidazo[4,5-b]pyrazine (I; R = β-D-ribofuranosyl) was prepared by glycosylation of the Me3Si derivative (I; R = Me3Si) (II), by fusion with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose, or by cycloaddition of 4,5-diamino-1-(β-D-ribofuranosyl)-imidazole with biacetyl.

The article 《Synthesis of imidazo[4,5-b]pyrazine nucleosides》 also mentions many details about this compound(4531-54-8)Quality Control of 1-Methyl-4-nitro-1H-imidazol-5-amine, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Our Top Choice Compound: 616-14-8

The article 《Aromatase inhibitors. Synthesis and evaluation of mammary tumor inhibiting activity of 3-alkylated 3-(4-aminophenyl)piperidine-2,6-diones》 also mentions many details about this compound(616-14-8)Product Details of 616-14-8, you can pay attention to it, because details determine success or failure

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Aromatase inhibitors. Synthesis and evaluation of mammary tumor inhibiting activity of 3-alkylated 3-(4-aminophenyl)piperidine-2,6-diones.Product Details of 616-14-8.

Piperidinediones I (R = H, Me, Et, Pr, CHMe2, CH2CHMe2, CHMeEt, pentyl, isopentyl, CH2CHMeEt, sec-pentyl, hexyl, heptyl) were prepared by alkylating PhCH2CN, addition reaction of PhCHRCN with CH2:CHCN, hydrolysis and ring closure of NCCRPhCH2CH2CN, nitration, and reduction of the nitro group. In vitro I showed a stronger inhibition of human placental aromatase than aminoglutethimide (II). The most active derivative, I (R = isopentyl), showed a 93-fold stronger inhibition than II. I, except I (R = CHMe2, CH2CHMe2, CHMeEt) exhibited equal or lower inhibition of bovine adrenal desmolase than II. Many I showed a stronger inhibition of the plasma estradiol concentration of pregnant mare serum gonadotropin-primed rats than II. They inhibited the testosterone-stimulated tumor growth of ovariectomized 9,10-dimethyl-1,2-benzanthracene tumor-bearing rats more strongly than II. Being stronger and more selective inhibitors of the estrogen biosynthesis than II, some of the newly developed derivatives of II might be better candidates for the treatment of hormone-dependent human breast cancer.

The article 《Aromatase inhibitors. Synthesis and evaluation of mammary tumor inhibiting activity of 3-alkylated 3-(4-aminophenyl)piperidine-2,6-diones》 also mentions many details about this compound(616-14-8)Product Details of 616-14-8, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

A new synthetic route of 616-14-8

The article 《Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger》 also mentions many details about this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane, you can pay attention to it, because details determine success or failure

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger, the main research direction is alkyl radical identification gas chromatog; iodide alkyl gas chromatog retention; solution heat alkyl iodide.Recommanded Product: 1-Iodo-2-methylbutane.

Alkyl radicals formed in low-pressure radiofrequency plasmas were identified by gas chromatog. using I as a scavenger compound Iodine vapors, injected into the glowing plasma discharge, reacted with active radicals in the gas phase, yielding various saturated alkyl iodides, that were trapped by freezing in an organic solvent and analyzed on Apiezon L and Carbowax 20M columns. Analyses carried out at different temperatures permitted the retention times and indexes to be measured and the relative molar heats of solution to be calculated

The article 《Gas chromatographic identification of alkyl radicals formed in plasma radiofrequency discharges by using iodine as a scavenger》 also mentions many details about this compound(616-14-8)Recommanded Product: 1-Iodo-2-methylbutane, you can pay attention to it, because details determine success or failure

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Analyzing the synthesis route of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Formula: C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Cerebrospinal fluid lymphocytes in experimental allergic encephalomyelitis.》. Authors are Wilkerson, L D; Lisak, R P; Zweiman, B.The article about the compound:1-Iodo-2-methylbutanecas:616-14-8,SMILESS:CCC(CI)C).Formula: C5H11I. Through the article, more information about this compound (cas:616-14-8) is conveyed.

We report characteristics of the cerebrospinal fluid (CSF) pleocytosis (616+/-148 cells/microliter) that occurred in guinea-pigs with definite clinical experimental allergic encephalomyelitis developing 12 to 16 days after sensitization with homologous myelin basic protein. This pleocytosis was not present in the cerebrospinal fluid of a group of animals studied when still healthy, 9 or 10 days after similar sensitization. Eighty-nine per cent of cells in the CSF pleocytosis were small lymphocytes, 8% were larger lymphocytes and the remainder mostly monocytes. Of the lymphocytes, most were E-rosetting or null cells. B-cell markers were uncommon. The cellular patterns in this CSF pleocytosis appear to be similar to those seen in some delayed hypersensitivity responses.

After consulting a lot of data, we found that this compound(616-14-8)Formula: C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Final Thoughts on Chemistry for 4531-54-8

After consulting a lot of data, we found that this compound(4531-54-8)Application of 4531-54-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Diimidazoles. IV. Derivatives of 4,5-diaminoimidazole and their attempted cyclization》. Authors are Schubert, Hermann; Heydenhauss, Dieter.The article about the compound:1-Methyl-4-nitro-1H-imidazol-5-aminecas:4531-54-8,SMILESS:NC1=C([N+]([O-])=O)N=CN1C).Application of 4531-54-8. Through the article, more information about this compound (cas:4531-54-8) is conveyed.

The preparation of a series of 1-methyl-4-nitro-5-alkylaminoimidazoles (I) is described. The catalytic hydrogenation of I and of 1-methyl-4-nitro-5-aminoimidazole (Ia) (R = H) (II) yielded unstable diamines which could neither be isolated nor cyclized. Acetylation of II gave the di-Ac derivative (III) of II. I were formylated and acetylated smoothly; hydrogenation of the products yielded stable acyl derivatives of 4,5-diaminoimidazole. (CONHMe)2 with PCl5 gave 40.8% 5-chloro-1-methylimidazole (IV), b15 90°. IV (103 g.), 100 cc. concentrated HNO3, and 400 cc. H2O evaporated, the residue added in portions at 10° to 3 times its weight of concentrated H2SO4, and the mixture heated 2 hrs. on a water bath yielded 122 g. 5-Cl analog (V) of II, m. 149-50°. V (13.2g.)in 3.5%absolute NH3EtOH heated 2 hrs. at 130-40° in a sealed tube yielded 6.3 g. II, m. 303° (decomposition) (H2O). II (5 g.) and 200 cc. Ac2O refluxed about 5 hrs. gave 5.2 g. III, m. 149.5-50.5°. V (1.62 g.) in 25 cc. 7% absolute alc. MeNH2 refluxed 3 hrs. yielded 1.45 g. Ia (R = Me) (VI), m. 156-7° (EtOH). VI (5 g.) in 50 cc. HCO2Ac kept 20 hrs. at room temperature and concentrated yielded 5 g. the N-CHO derivative (VII), m. 142.5-3.5° (EtOH). VI (10 g.) in 200 cc. Ac2O heated 1 hr. at 90-100° gave 8.2 g. the N-Ac derivative (VIII), m. 168-9° (BuOH or dioxane). V (1.62 g.) in 37 cc. 7% absolute alc. EtNH2 refluxed 3 hrs. and refrigerated overnight yielded 1.6 g. Ia (R = Et), m. 161-2° (dioxane). In the same manner were prepared the following Ia (R, m.p., and % yield given): Pr, 114-18° (dioxan-epetr. ether), 92; Bu, 101-6° (dioxane-petr. ether), 61; PhCH2, 132-3° (EtOH), 90. Also prepared was the N-Me derivative of VI, m. 94-5.5° (C6H6-petr. ether), 47% yield. II (0.76 g.) in 30 cc. 85% HCO2H hydrogenated 4 hrs. at 17°/756 mm. over 0.2 g. PtO2 yielded a black-brown oil, which treated with dilute aqueous NaOH liberated NH3. III (0.5 g.) in 45 cc. absolute BuOH hydrogenated 40 min. at 17°/770 mm. over 0.2 g. PtO2, and the resulting oily product in C6H6 treated with the stoichiometric amount picric acid yielded 1-methyl-4-amino-5-(N,N-diacetylamino)imidazole picrate, m. 160-1° (decomposition) (BuOH). The BuOH solution from a duplicate run refluxed 1.5 hrs. under argon gave only a brown, flocculent precipitate Hydrogenation of 0.5 g. VI in H2O, dilute HCl, dry dioxane, AcOH, AcOH-HCl, and Ac2O over 0.2 g. PtO2 gave only oily unstable materials. VII (0.6 g.) in 100 cc. Bu0H hydrogenated 50 min. at 18°/763 mm., and the resulting yellow oil treated in EtOH with picric acid gave the picrate of 1-methyl-4-amino-5-(N-methyl-N-formylamino)imidazole (IX), m. 173-70 (decomposition) (H2O); styphnate m. 177-8.5° (decomposition) (H2O). The BuOH solution of the crude IX refluxed 2 hrs. under argon yielded a brown, flocculent precipitate VIII (2 g.) in 120 cc. BuOH hydrogenated 1 hr. at 20°/755 mm. over 0.4 g. PtO2 yielded 1.4 g. 5-AcMeN analog (X) of IX, m. 165-6° ( PhCl); picrate m. 217-21° (decomposition) (H2O); styphnate m. 196-9° (decomposition) (H2O); HCl salt m. 225-6° (decomposition). All attempted cyclizations of X were unsuccessful. X (0.5 g.) in 3 cc. absolute HCO2H refluxed 1.5 hrs. yielded 0.4 g. 1-methyl-4-formyl-amino-5-(N-methyl-N-acetylamino)imidazole (XI), m. 154-5.5° (absolute EtOH-Et2O). X (2.1 g.) in 15 cc. AcOH refluxed 0.5 hr. yielded 1.47 g. 4-AcNH analog of XI, m. 188.5-9.5° (1:1 dioxane-PhCl); picrate m. 166-9° (EtOH); all attempted cyclizations were unsuccessful.

After consulting a lot of data, we found that this compound(4531-54-8)Application of 4531-54-8 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Interesting scientific research on 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Australian Journal of Chemistry called An extension of the linear relationship between molecular rotation and bond refraction, Author is Poh, Bo-Long, which mentions a compound: 616-14-8, SMILESS is CCC(CI)C, Molecular C5H11I, Application In Synthesis of 1-Iodo-2-methylbutane.

For the empirical equations [M]D = mΣ RD + I; [M]D is the mol. rotation, ΣRD is the sum of bond refractions, and m and I are constants for a given series of compounds, a different treatment of the term ΣRD extends the usefulness of the equation to all types of substituents, not just monovalent and linear substituents.

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Machine Learning in Chemistry about 4531-54-8

After consulting a lot of data, we found that this compound(4531-54-8)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine can be used in many types of reactions. And in most cases, this compound has more advantages.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 1-Methyl-4-nitro-1H-imidazol-5-amine, is researched, Molecular C4H6N4O2, CAS is 4531-54-8, about Nucleophilic substitution reactions of 1-methyl-4,5-dinitroimidazole with aqueous ammonia or sodium azide, the main research direction is nucleophilic substitution reaction methyldinitroimidazole aqueous ammonia sodium azide.Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine.

In this work, 5-amino-1-methyl-4-nitroimidazole was synthesized by amination reaction of 1-methyl-4,5-dinitroimidazole with aqueous ammonia in 95% yield. Meanwhile, one of its isomers, 4-amino-1-methyl-5-nitroimidazole as byproduct was obtained from the filtrate. Furthermore, nucleophilic substitution reaction of 1-methyl-4,5-dinitroimidazole with sodium azide gave 5-azido-1-methyl-4-nitroimidazole in 98% yield. The three compounds were characterized by IR, 1H and 13C NMR spectra, m.ps., and elemental anal. The structure of 4-amino-1-methyl-5-nitroimidazole was further confirmed by single crystal X-ray diffraction. These reactions indicate that the nitro group at position 5 of 1-methyl-4,5-dinitroimidazole is quite unstable, as well as partial substitution of nitro group at position 4 also occurred in aqueous ammonia. Only one nitro group of the two is involved in nucleophilic substitution reaction in each case.

After consulting a lot of data, we found that this compound(4531-54-8)Application In Synthesis of 1-Methyl-4-nitro-1H-imidazol-5-amine can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Introduction of a new synthetic route about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Computed Properties of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Inukai, Norie; Kawai, Tsuyoshi; Yuasa, Junpei researched the compound: 1-Iodo-2-methylbutane( cas:616-14-8 ).Computed Properties of C5H11I.They published the article 《Two Distinct Thermal Stabilities of DNA and Enzymatic Activities of DNase I in a Multistep Assembly with Carbazole Ligands: Different Binding Characteristics for Duplex and Quadruplex DNA》 about this compound( cas:616-14-8 ) in Chemistry – A European Journal. Keywords: DNA DNase I multistep carbazole ligand duplex quadruplex. We’ll tell you more about this compound (cas:616-14-8).

A partially hydrophobic carbazole ligand ((Im+)2Cz: 2,2′-(9-ethyl-9 H-carbazole-3,6-diyl)bis(ethyne-2,1-diyl)bis(1,3-dimethyl-1 H-imidazol-3-ium)) adopts two different binding states (binding states I and II) in its interactions with calf-thymus (ct-) DNA. Two distinct binding states were identified by biphasic UV/Vis and CD spectral changes during the titration of DNA into the carbazole ligand. At low concentrations of ct-DNA, (Im+)2Cz binds to nearly every part of ct-DNA (binding state I). By contrast, an increased concentration of ct-DNA results in a switch in the DNA-binding state, so that the ligands are bound per five DNA base pairs. Similarly, a monocationic carbazole ligand (Im+Cz: 2-((6-bromo-9-ethyl-9 H-carbazol-3-yl)ethynyl)-1,3-dimethyl-1 H-imidazol-3-ium) also shows biphasic UV/Vis spectral changes during the titration of ct-DNA into Im+Cz, which suggests two different binding states of the Im+Cz ligand with ct-DNA. The stepwise equilibrium of the ligand-DNA-complex formation is capable of switching the thermal stability of ct-DNA, as well as the enzymic activity of DNase (DNase I). In binding state I, the (Im+)2Cz ligands interact with nearly every base pair in ct-DNA and stabilize the double-helix structure, which results in a larger increase in the melting temperature of the ct-DNA than that observed with binding state II. On the other hand, the (Im+)2Cz ligand significantly reduces the enzymic activity of DNase I in binding state I, although the enzymic activity is recovered once the binding state of the ligand-DNA complex is changed to binding state II. The (Im+)2Cz ligand was also employed as a binder for G-quadruplex DNA. In contrast to the stepwise complex formation between (Im+)2Cz and ct-DNA, (Im+)2Cz shows a monotonous UV/Vis spectral response during the titration of G-quadruplex DNA into (Im+)2Cz, which suggests a single binding state for (Im+)2Cz with G-quadruplex DNA.

After consulting a lot of data, we found that this compound(616-14-8)Computed Properties of C5H11I can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Continuously updated synthesis method about 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Name: 1-Iodo-2-methylbutane. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 1-Iodo-2-methylbutane, is researched, Molecular C5H11I, CAS is 616-14-8, about SPME-GC-MS analysis of volatile components in fruits of the frozen Ficus tikoua Bur.. Author is Yang, Xiu-qun; Liao, Bin; Yan, Xue-fen; Yang, Ya.

This thesis developed an SPME-GC-MS method for the aroma components in Ficus tikoua Bur. fruit. At the same time, the solid-phase micro extraction conditions were optimized: extraction temperature was 50°C, the extraction time was 40 min, added 8 g of sodium chloride electrolyte solid extraction Frozen Ficus tikoua Bur. fruit was detected out of 152 kinds of volatile substances, substances detected in 99.03%of the total. The main aroma components were esters, accounting for 33.06%; alcs., accounting for 13.14%; alkanes, accounting for 13.18%; there ketones, aldehydes, acids and other substances. Higher levels of 10 kinds of aroma components were guaiacol (14.71%), cyclobutane carboxylic acid dodecyl ester (13.54%), n-tridecane (6.05%), 2-tridecanone (4.72%), cyclohexasiloxane (4.44%), cyclobutane carboxylic acid decyl ester (4.18%), Me nonyl ketone (3.62%), acetic acid (2.98%), cyclopentanecarboxylic acid thirteen ester (2.48%), 2-tetradecanol (2.31%) and so on.

After consulting a lot of data, we found that this compound(616-14-8)Name: 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem

 

Extracurricular laboratory: Synthetic route of 616-14-8

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Otto, R.; Hecht, P. published an article about the compound: 1-Iodo-2-methylbutane( cas:616-14-8,SMILESS:CCC(CI)C ).Application In Synthesis of 1-Iodo-2-methylbutane. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-14-8) through the article.

Short-lived radioisotopes separated from radionuclide generators are widely used. Possibilities of labeling with the daughter nuclides of the com. available Mo/Tc-, Sn/In-, and Te/I-generators and of the self-made Ba/La-generator in industrial tracer experiments are presented. The transfer of the daughter nuclides from the generator eluates into organic phases and the labeling of oil-phases and solid particles are investigated. The developed simple, quick and efficient methods are suitable for routine application under industrial conditions. Some examples of industrial applications of the generator nuclides are given, too.

After consulting a lot of data, we found that this compound(616-14-8)Application In Synthesis of 1-Iodo-2-methylbutane can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Thiomorpholine – Wikipedia,
Thiomorpholine | C4H9NS – PubChem